...
首页> 外文期刊>Electrochemistry communications >Glucose oxidase anode for biofuel cell based on direct electron transfer
【24h】

Glucose oxidase anode for biofuel cell based on direct electron transfer

机译:基于直接电子转移的生物燃料电池葡萄糖氧化酶阳极

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This paper presents a new design concept of a glucose oxidase (GO(x)) electrode as an anode for the biofuel cell based on direct electron transfer (DET) between the active site of an enzyme and the multi-walled carbon nanotube (MWNT)-modified electrode surface. Toray (R) carbon paper (TP) with a porous three-dimensional network (78% porosity) was used as a matrix for selectively growing multi-walled carbon nanotubes. The incorporation of MWCNTs into TP was provided by the chemical vapor deposition technique after an electrochemical transition of cobalt metal seeds. This approach has the ability to efficiently promote DET reactions. The morphologies and electrochemical characteristics of the GO(x) modified electrodes were investigated by scanning electron microscopy, cyclic voltammetry, and potentiometric methods. The combination of poly-cation polyethylenimine (PEI) with negatively charged glucose oxidase provides formation of similar to 100 nm thick films on the TP/MWCNT surface. The tetrabutylammonium bromide salt-treated Nafion (R) was used as GO(x) binder and proton-conducting medium. The TP/MWCNT/PEI/GO(x)/Nafion (R) modified electrode operates at 25 degrees C in 0.02 M phosphate buffer solution (pH 6.9) containing 0.1 M KCl in the presence of 20 mM glucose. The open circuit potential of GO(x) anode was between -0.38 V and -0.4 V vs. Ag/AgCl, which is closer to the redox potential of the FAD/FADH(2) cofactor in the enzyme itself. The GO(x) electrode has a potential to work in vivo by using endogenous substances, such as glucose and oxygen. Such a glucose anode allows for the development of a new generation of miniaturized membrane-less biofuel cells. (c) 2006 Elsevier B.V. All rights reserved.
机译:本文提出了一种基于葡萄糖氧化酶(GO(x))电极作为生物燃料电池阳极的新设计概念,该酶基于酶的活性位点与多壁碳纳米管(MWNT)之间的直接电子转移(DET)修饰的电极表面。具有多孔三维网络(孔隙率78%)的Toray碳纸(TP)被用作选择性生长多壁碳纳米管的基质。在钴金属晶种发生电化学转变后,通过化学气相沉积技术将MWCNT结合到TP中。这种方法具有有效促进DET反应的能力。通过扫描电子显微镜,循环伏安法和电位法研究了GO(x)修饰电极的形貌和电化学特性。聚阳离子聚乙烯亚胺(PEI)与带负电荷的葡萄糖氧化酶的结合可在TP / MWCNT表面上形成类似于100 nm厚的膜。溴化四丁基铵盐处理过的Nafion(R)用作GO(x)粘合剂和质子传导介质。 TP / MWCNT / PEI / GO(x)/ Nafion(R)修饰的电极在含有0.1 M KCl的0.02 M磷酸盐缓冲溶液(pH 6.9)中在25摄氏度下于20 mM葡萄糖存在下工作。相对于Ag / AgCl,GO(x)阳极的开路电势在-0.38 V至-0.4 V之间,更接近于酶本身中FAD / FADH(2)辅助因子的氧化还原电势。 GO(x)电极具有通过使用内源性物质(例如葡萄糖和氧气)在体内起作用的潜力。这种葡萄糖阳极允许开发新一代的小型化的无膜生物燃料电池。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号