...
首页> 外文期刊>Electrocatalysis >Heterogenization of a Water-Insoluble Molecular Complex for Catalysis of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions
【24h】

Heterogenization of a Water-Insoluble Molecular Complex for Catalysis of the Proton-Reduction Reaction in Highly Acidic Aqueous Solutions

机译:水不溶性分子配合物的异质化,以催化高酸性水溶液中的质子还原反应

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Our long-held interest in the resiliency of electrochemical functionalities upon surface immobilization has herded us from directly chemisorbed electroactive moieties [1, 2], to anchor group-leashed redox-active couples [3] and to surface-tethered enzyme-inspired molecular catalysts [4-6]. The latter represent the most intricate because the electrocat-alytic activities involve mixed-valence states and may require certain entatic (fractionally rotated) configurations [6, 7]. In this regard, we recently investigated the proton-reduction electrocatalysis by hydrogenase-inspired di-iron complexes at polycrystalline and (111)-faceted Au electrodes [4-6]. One complex, (μ-S2C3H6)[Fe(CO)3][Fe(CO)2PPh3], was devoid of a surface anchor group and, hence, was present only in solution; the other complex, (μ-S2C3H6)[Fe(CO)3][Fe(CO)2(PPh2(CH2)2SH)] (I), was bound to the surface through its mercapto group that allowed the catalytic di-iron moiety to remain to be pendant. The electrochemistry experiments had to be performed in acetonitrile, with n-Bu4NBF4 as a supporting electrolyte, because the complexes are insoluble in aqueous solutions. No activity was displayed by the homogeneous compound; dramatic catalysis was shown by the heterogenized complex. Earlier computational studies had indicated that the iron hydride intermediate is formed at a terminal site on a partially rotated iron [7, 8]; evidently, such entatic process is not hindered even at a densely packed surface-sequestered catalyst. We have now expanded the work to explore the extensibility of the heterogenization protocol to highly acidic aqueous solutions (0.5 M H2SO4). The results are described in this letter..
机译:我们长期以来对表面固定时电化学功能的回弹力的兴趣使我们从直接化学吸附的电活性部分[1、2],锚定基团浸出的氧化还原活性对[3]和表面束缚的酶启发分子催化剂中脱颖而出[4-6]。后者代表最复杂的原因,因为电催化活性涉及混合价态,并且可能需要某些焓(分数旋转)构型[6,7]。在这方面,我们最近研究了在多晶和(111)面金电极上由氢化酶启发的二铁配合物引起的质子还原电催化[4-6]。一种复合物(μ-S2C3H6)[Fe(CO)3] [Fe(CO)2PPh3]没有表面锚定基团,因此仅存在于溶液中。另一个配合物(μ-S2C3H6)[Fe(CO)3] [Fe(CO)2(PPh2(CH2)2SH)](I)通过其巯基与表面结合,从而允许催化二铁保持悬垂的部分。电化学实验必须在乙腈中以n-Bu4NBF4作为支持电解质进行,因为该配合物不溶于水溶液。均相化合物未显示出活性。杂化的配合物显示出剧烈的催化作用。较早的计算研究表明,氢化铁中间体是在部分旋转的铁的末端形成的[7,8]。显然,即使在紧密堆积的表面截留的催化剂下也不会阻碍这样的焓过程。现在,我们已经扩大了工作,以探索异质化方案对高酸性水溶液(0.5 M H2SO4)的可扩展性。结果在这封信中描述。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号