首页> 外文期刊>Boundary-layer Meteorology >A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects
【24h】

A Wind-Tunnel Investigation of Wind-Turbine Wakes: Boundary-Layer Turbulence Effects

机译:风洞风洞研究:边界层湍流效应

获取原文
获取原文并翻译 | 示例
       

摘要

Wind-tunnel experiments were performed to study turbulence in the wake of a model wind turbine placed in a boundary layer developed over rough and smooth surfaces. Hot-wire anemometry was used to characterize the cross-sectional distribution of mean velocity, turbulence intensity and kinematic shear stress at different locations downwind of the turbine for both surface roughness cases. Special emphasis was placed on the spatial distribution of the velocity deficit and the turbulence intensity, which are important factors affecting turbine power generation and fatigue loads in wind energy parks. Non-axisymmetric behaviour of the wake is observed over both roughness types in response to the non-uniform incoming boundary-layer flow and the effect of the surface. Nonetheless, the velocity deficit with respect to the incoming velocity profile is nearly axisymmetric, except near the ground in the far wake where the wake interacts with the surface. It is found that the wind turbine induces a large enhancement of turbulence levels (positive added turbulence intensity) in the upper part of the wake. This is due to the effect of relatively large velocity fluctuations associated with helicoidal tip vortices near the wake edge, where the mean shear is strong. In the lower part of the wake, the mean shear and turbulence intensity are reduced with respect to the incoming flow. The non-axisymmetry of the turbulence intensity distribution of the wake is found to be stronger over the rough surface, where the incoming flow is less uniform at the turbine level. In the far wake the added turbulent intensity, its positive and negative contributions and its local maximum decay as a power law of downwind distance (with an exponent ranging from -0.3 to -0.5 for the rough surface, and with a wider variation for the smooth surface). Nevertheless, the effect of the turbine on the velocity defect and added turbulence intensity is not negligible even in the very far wake, at a distance of fifteen times the rotor diameter.
机译:进行风洞实验以研究模型风力涡轮机的湍流,该模型放置在粗糙和光滑表面上形成的边界层中。对于两种表面粗糙情况,均使用热线风速仪来表征涡轮顺风向不同位置处的平均速度,湍流强度和运动剪切应力的横截面分布。特别强调了速度不足和湍流强度的空间分布,这是影响风力发电场中涡轮发电和疲劳载荷的重要因素。响应于不均匀的进入边界层流和表面的影响,在两种粗糙度类型上都观察到尾流的非轴对称行为。尽管如此,相对于入射速度分布的速度赤字几乎是轴对称的,除了在远尾流中与尾流相互作用的地面附近。已经发现,风力涡轮机在尾流的上部引起湍流水平的大幅提高(正的增加的湍流强度)。这是由于在平均剪切强的尾流边缘附近与螺旋状尖端涡旋相关的相对较大的速度波动的影响。在尾流的下部,相对于进入的水流,平均剪切强度和湍流强度降低了。发现尾流的湍流强度分布的非轴对称性在粗糙表面上更强,在粗糙表面上,进入的流动在涡轮机水平上不太均匀。远远地,增加的湍流强度,其正负贡献以及其局部最大衰减(作为顺风距离的幂律)(粗糙表面的指数范围为-0.3到-0.5,平滑度的指数范围更大)表面)。尽管如此,涡轮机对速度缺陷和增加的湍流强度的影响即使在很远的尾流处也是如此,在转子直径的15倍的距离处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号