首页> 外文期刊>Boundary-layer Meteorology >MOMENTUM TRANSFER AND TURBULENT KINETIC ENERGY BUDGETS WITHIN A DENSE MODEL CANOPY
【24h】

MOMENTUM TRANSFER AND TURBULENT KINETIC ENERGY BUDGETS WITHIN A DENSE MODEL CANOPY

机译:密实模型冠层内的动量传递和湍流动力学能量预算

获取原文
获取原文并翻译 | 示例
           

摘要

Second-order closure models for the canopy sublayer (CSL) employ a set of closure schemes developed for 'free-air' flow equations and then add extra terms to account for canopy related processes. Much of the current research thrust in CSL closure hasfocused on these canopy modifications. Instead of offering new closure formulations here, we propose a new mixing length model that accounts for basic energetic modes within the CSL. Detailed flume experiments with cylindrical rods in dense arrays to represent a rigid canopy are conducted to test the closure model. We show that when this length scale model is combined with standard second-order closure schemes, first and second moments, triple velocity correlations, the mean turbulent kinetic energy dissipation rate, and the wake production are all well reproduced within the CSL provided the drag coefficient (C_D) is well parameterized The main theoretical novelty here is the analytical linkage between gradient-diffusion closure schemes for the triplevelocity correlation and non-local momentum transfer via cumulant expansion methods. We showed that second-order closure models reproduce reasonably well the relative importance of ejections and sweeps on momentum transfer despite their local closure approximations. Hence, it is demonstrated that for simple canopy morphology (e.g., cylindrical rods) with well-defined length scales, standard closure schemes can reproduce key flow statistics without much revision. When all these results are taken together, it appears that the predictive skills of second-order closure models are not limited by closure formulations; rather, they are limited by our ability to independently connect the drag coefficient and the effective mixing length to the canopy roughnessdensity With rapid advancements in laser altimetry, the canopy roughness density distribution will become available for many terrestrial ecosystems. Quantifying the sheltering effect, the homogeneity and isotropy of the drag coefficient, and more importantly, the canonical mixing length, for such variable roughness density is still lacking.
机译:冠层子层(CSL)的二阶闭合模型采用为“自由空气”流动方程式开发的一组闭合方案,然后添加额外的项以说明与冠层相关的过程。当前对CSL封闭的研究主要集中在这些冠层的修改上。除了在这里不提供新的封闭公式外,我们还提出了一个新的混合长度模型,该模型考虑了CSL中的基本能量模式。进行了详细的水槽实验,以密集阵列的圆柱棒表示刚性顶篷,以测试封闭模型。我们显示,当此长度尺度模型与标准的二阶闭合方案组合时,只要阻力系数大,CSL内就可以很好地再现一阶和二阶矩,三重速度相关性,平均湍动能耗散率和尾流产生。 (C_D)的参数设置很好。这里的主要理论新颖之处在于,用于三水平相关性的梯度扩散封闭方案与通过累积量扩展方法进行的非局部动量传递之间的分析联系。我们表明,二阶闭合模型可以很好地重现射出和横移对动量传递的相对重要性,尽管它们的局部闭合近似。因此,证明了对于具有明确定义的长度尺度的简单冠层形态(例如,圆柱形杆),标准的闭合方案可以在不进行大量修改的情况下再现关键流量统计。当所有这些结果加在一起时,似乎二阶封闭模型的预测技能不受封闭公式的限制;相反,它们受到我们将阻力系数和有效混合长度独立地关联到冠层粗糙度密度的能力的限制。随着激光测高技术的快速发展,冠层粗糙度密度分布将可用于许多陆地生态系统。对于这种可变的粗糙度密度,仍缺乏量化掩蔽效果,阻力系数的均质性和各向同性,更重要的是规范混合长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号