...
首页> 外文期刊>Bulletin of Environmental Contamination and Toxicology >Mercury concentrations in groundwater collected from wells on and near the Nevada Test Site, USA
【24h】

Mercury concentrations in groundwater collected from wells on and near the Nevada Test Site, USA

机译:从美国内华达州试验场及其附近的井中收集的地下水中的汞浓度

获取原文
获取原文并翻译 | 示例
           

摘要

Groundwater from southern Nevada has been studied extensively and characterized chemically on a number of occasions due to its proximity to the Nevada Test Site (NTS), Yucca Mountain, and Death Valley National Park (e, g., Winograd and Eakin 1964; Dudley and Larson 1976; White and Chuma 1987; Farnhamet al. 2000; Stetzenbach et al 2001). The NTS is of interest because a number of nuclear devices were detonated within its boundaries at or below the water table; Yucca Mountain is relevant because it is the proposed geologic repository for storage of the nation's high-level nuclear waste; and Death Valley National Park because there exist numerous natural springs throughout the Park. Many of these more recent studies have taken advantage of inductively coupled plasma mass spectrometry (ICPMS) to determine concentrations of trace (mu g/L) and ultra-trace (ng/L) elements. The technique, developed in the mid-1980's, is ideally suited for groundwater analyses because of its low detection limits and multi-element capabilities. The data generated by ICPMS for southern Nevada groundwater has proved useful in evaluating groundwater sources and flow histories, including mixing patterns (e. g, Tohannesson et al, 1997a,b). Noticeable absent from all these studies is the element mercury. This is understandable considering the difficulty in reliably determining mercury at ng/L levels, typically found for groundwater away from point sources of mercury. Problems with determining mercury at these levels include sample contamination, mercury is ubiquitous at low-levels, and relatively poor detection limits by ICPMS due to mercury's poor ionization in the plasma.
机译:内华达州南部的地下水由于靠近内华达试验场(NTS),尤卡山和死亡谷国家公园(例如Winograd和Eakin 1964; Dudley和1964)而被广泛研究和化学表征。 Larson 1976; White and Chuma 1987; Farnhamet等2000; Stetzenbach等2001)。 NTS之所以引起人们的兴趣是因为在水面或地下水面以下的边界内引爆了许多核装置。尤卡山(Yucca Mountain)具有重要意义,因为它是拟议中的用于存储该国高级核废料的地质资料库;以及死亡谷国家公园(Death Valley National Park),因为整个公园都拥有众多天然温泉。这些最新研究中的许多已经利用电感耦合等离子体质谱(ICPMS)来测定痕量(mu g / L)和超痕量(ng / L)元素的浓度。该技术于1980年代中期开发,由于其低检测限和多元素功能,非常适合于地下水分析。由ICPMS生成的内华达州南部地下水数据已被证明可用于评估地下水源和流动历史,包括混合模式(例如,Tohannesson等,1997a,b)。所有这些研究中都明显缺少汞元素。考虑到难以可靠地确定ng / L级汞的难度,这是可以理解的,通常是针对远离汞源的地下水。在这些水平下确定汞的问题包括样品污染,低水平下无处不在的汞,以及由于等离子体中汞的离子化不佳,ICPMS的检测限相对较差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号