首页> 外文期刊>Bulletin of Environmental Contamination and Toxicology >Differentiating metal from ammonia toxicity in toxicity identification evaluations
【24h】

Differentiating metal from ammonia toxicity in toxicity identification evaluations

机译:在毒性鉴定评估中区分金属与氨毒性

获取原文
获取原文并翻译 | 示例
           

摘要

Ammonia is a common nutrient and originates from sewage, industrial ana farm wastes, fertilisers, and from natural decomposition processes (Sarda and Burton 1995). In water ammonia exists as un-ionised ammonia (NH_3) and as the ammonia ion (NH4+). The toxicity of ammonia solutions to freshwater macroinvertebrates is primarily attributed to the NH3 (the un-ionised species), with the ammonium ion (ionised species) being relatively less toxic (Kendall 1986). High concentrations of ammonia often co-occur with high levels of heavy metals and organic pollutants. This can lead to confounding toxicity test results (Ankley et al. 1990; Ankley and Schubauer-Berigan 1995; Ferretti et al. 2000). Distinguishing ammonia toxicity from toxicity caused by metals or organic pollutants is therefore important in determining appropriate methods for ecological risk assessment. Toxicity Identification Evaluation (TIE) studies have indicated that ammonia is often partly responsible for the toxicity of sediment samples (Ankley et al. 1990; Schubauer-Berigan and Ankley 1991; Burkhard and Jenson 1993). Within standard TIE procedures, the graduated pH test and EDTA-chelation are treatments that have been proposed as methods to differentiate between ammonia and metal toxicity (Norberg-King et al. 1991). EDTA-chelation is used as an indicator of metal toxicity (Norberg-King et al. 1991; Hockett and Mount 1996). However, it is not clear from literature whether EDTA can also influence ammonia toxicity. Most positively chargedions will interact with EDTA to some extent, but especially divalent transition metals, including cadmium, copper, nickel, lead and zinc, have high affinities (Garvin 1964). The toxicity of ammonia is pH dependent because of the pH-dependent equilibriumbetween ionised and unionised ammonia. However, the toxicity of metals and organic acids is also dependent on the pH (Norberg-King et al. 1991; Schubauer Berigan et al. 1993). Therefore, toxicity changes after pH adjustments can not be interpreted as resulting exclusively from ammonia and changes in toxicity after addition of EDTA can not be exclusively related to metals. As alternatives, the equitoxic solution test and the zeolite test can be used (Mount et al. 1989). The equitoxic solution test is difficult to perform because pH adjustments and pH control within 0.1 pH unit is required. The zeolite test has the following disadvantages: both ammonia and metals are removed from porewater and most important, the material can leach toxic artefacts (Mount et al. 1989).
机译:氨是一种常见的营养素,来源于污水,工业废料,肥料和自然分解过程(Sarda和Burton,1995年)。在水中,氨以未电离的氨(NH_3)和氨离子(NH4 +)的形式存在。氨溶液对淡水大型无脊椎动物的毒性主要归因于NH3(非离子化物种),而铵离子(离子化物种)的毒性相对较低(Kendall 1986)。高浓度的氨经常与高含量的重金属和有机污染物同时发生。这可能导致混淆的毒性测试结果(Ankley等,1990; Ankley和Schubauer-Berigan,1995; Ferretti等,2000)。因此,将氨的毒性与金属或有机污染物引起的毒性区分开来对于确定生态风险评估的适当方法很重要。毒性鉴定评估(TIE)研究表明,氨通常是造成沉积物样品毒性的部分原因(Ankley等,1990; Schubauer-Berigan和Ankley,1991; Burkhard和Jenson,1993)。在标准的TIE程序中,pH分级测试和EDTA螯合是已经提出的区分氨和金属毒性的方法(Norberg-King等,1991)。 EDTA-螯合用作金属毒性的指标(Norberg-King等,1991; Hockett and Mount 1996)。然而,从文献中尚不清楚EDTA是否也会影响氨的毒性。大多数带正电的电荷会在一定程度上与EDTA相互作用,但尤其是二价过渡金属(包括镉,铜,镍,铅和锌)具有高亲和力(Garvin 1964)。氨的毒性取决于pH,这是因为离子化和工会化的氨之间存在pH依赖性平衡。但是,金属和有机酸的毒性也取决于pH值(Norberg-King等,1991; Schubauer Berigan等,1993)。因此,不能将pH值调节后的毒性变化解释为仅由氨引起,而添加EDTA后的毒性变化也不能仅与金属有关。作为替代方案,可以使用等毒溶液测试和沸石测试(Mount等,1989)。进行等毒溶液测试很困难,因为需要在0.1 pH单位内进行pH调节和pH控制。沸石测试具有以下缺点:氨和金属均从孔隙水中去除,最重要的是,该材料会滤出有毒的伪像(Mount等,1989)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号