首页> 外文期刊>Earthquake and structures: An International journal of earthquake engineering & earthquake effects on structures >Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique
【24h】

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

机译:混合计算技术在隧道非均质土层中的地震运动

获取原文
获取原文并翻译 | 示例
       

摘要

We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.
机译:我们研究包含隧道的非均匀地质区域中地震诱发的反平面应变波运动。考虑了两种不同的方案:(a)第一种方案在有限地质区域中的两个隧道中建模,该地质区域埋在包含地震源的横向非均匀分层地质剖面内。对于这种情况,被标记为第一个边值问题(BVP1),开发并应用了包括有限差分法(FDM)和边界元法(BEM)的有效混合技术。由于后面的方法基于弹性动力学的频率相关基本解,因此在频域中定义了混合技术。然后,使用快速傅里叶逆变换(FFT)来恢复时间历史。 (b)第二种方法模拟具有两个隧道的有限区域,并嵌入均匀的半平面中,并受到入射的时谐SH波的影响。这种情况被标记为第二个边值问题(BVP 2),它考虑到了复杂的土壤特性,例如各向异性,连续非均质性和多孔弹性。现在的计算方法仅是BEM,因为不需要通过FDM解决周围的半平面。总而言之,混合FDM-BEM技术能够量化在自由表面上产生的信号对以下关键参数的依赖性:地震震源特性,波径的非均质结构(FDM分量)和近地表地质沉积包含隧道形式的不连续性(BEM组件)。最后,混合技术用于评估在希腊萨洛尼卡市地铁建设项目的关键地质剖面内形成的地震波场,其中包括重要的罗马时代圆形建筑历史遗迹,可追溯到公元3世纪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号