首页> 外文期刊>Ecology: A Publication of the Ecological Society of America >Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2
【24h】

Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2

机译:大气低二氧化碳和高二氧化碳下氮对土壤固碳的潜在限制

获取原文
获取原文并翻译 | 示例
           

摘要

The interaction between nitrogen cycling and carbon sequestration is critical in predicting the consequences of anthropogenic increases in atmospheric CO2 (hereafter, C-a). The progressive N limitation (PNL) theory predicts that carbon sequestration in plants and soils with rising Ca may be-constrained by the availability of nitrogen in many ecosystems. Here we report on the interaction between C and N dynamics during a four-year field experiment in which an intact C-3/C-4 grassland was exposed to a gradient in C-a from 200 to 560 mu mol/mol. There were strong species effects on decomposition dynamics, with C loss positively correlated and N mineralization negatively correlated with C-a for litter of the C-3 forb Solanum dimidiatum, whereas decomposition of litter from the C-4 grass Bothriochloa ischaemum was unresponsive to C-a. Both soil microbial biomass and soil respiration rates exhibited a nonlinear response to C-a, reaching a maximum at similar to 440 mu mol/mol C-a. We found a general movement of N out of soil organic matter and into aboveground plant biomass with increased C-a. Within soils we found evidence of C loss from recalcitrant soil C fractions with narrow C:N ratios to more labile soil fractions with broader C:N ratios, potentially due to decreases in N availability. The observed reallocation of N from soil to plants over the last three years of the experiment supports the PNL theory that reductions in N availability with rising C-a could initially be overcome by a transfer of N from low C:N ratio fractions to those with higher C:N ratios. Although the transfer of N allowed plant production to increase with increasing C-a, there was no net soil C sequestration at elevated C-a, presumably because relatively stable C is being decomposed to meet microbial and plant N requirements. Ultimately, if the C gained by increased plant production is rapidly lost through decomposition, the shift in N from older soil organic matter to rapidly decomposing plant tissue may limit net C sequestration with increased plant production.
机译:氮循环与固碳之间的相互作用对于预测人为增加大气中二氧化碳的后果至关重要(以下简称C-a)。渐进式氮限制(PNL)理论预测,随着钙的增加,植物和土壤中的碳固存可能会受到许多生态系统中氮的可用性的限制。在这里,我们报告了一个为期四年的田间试验中C和N动力学之间的相互作用,在该试验中,完整的C-3 / C-4草原暴露于C-a中200至560μmol/ mol的梯度中。物种对分解动力学有很强的影响,C-3 for Solanum dimidiatum凋落物的凋落物C损失呈正相关,而N矿化与C-a负相关,而C-4草丛中的凋落物分解对C-a无响应。土壤微生物生物量和呼吸速率均表现出对C-a的非线性响应,在接近440μmol / mol C-a时达到最大值。我们发现,随着C-a的增加,N从土壤有机质向地上植物生物量的总体运移。在土壤中,我们发现有证据表明,碳氮比从狭窄的顽固土壤碳组分流失到碳氮比更大的不稳定土壤组分,这可能是由于氮的有效性降低所致。在实验的最后三年中观察到的氮从土壤到植物的重新分配支持了PNL理论,即最初可以通过将N从低C:N比例的部分转移到高C的部分来克服Ca升高引起的N有效性降低。 :N比率。尽管氮的转移使植物的产量随C-a的增加而增加,但在较高的C-a下没有净的土壤C固存,这可能是因为分解了相对稳定的C以满足微生物和植物N的需要。最终,如果因分解而迅速损失了因增加植物产量而获得的碳,那么氮从较旧的土壤有机质向迅速分解的植物组织的转移可能会限制植物净产量的增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号