首页> 外文期刊>Economic geology and the bulletin of the Society of Economic Geologists >Invited Paper:The Physical Hydrogeology of Ore Deposits
【24h】

Invited Paper:The Physical Hydrogeology of Ore Deposits

机译:受邀论文:矿床的物理水文地质

获取原文
获取原文并翻译 | 示例
           

摘要

Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that ishydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents acomplex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal(T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challengeour computational ability. Though research into these coupled behaviors has found only a limited subset to bequantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a widerange of geologic environments including sedimentary, metamorphic, and magmatic. Examples of theseinsights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitationmechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquiretheir temperature and composition, and the controlling influence of permeability and other rock properties onhydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterizethe physical hydrogeology of hydrothermal systems and discuss how this theory has been applied instudies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-formingsystems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transportfully in the many ore systems that show evidence of repeated shear or tensional failure with associateddynamic variations in permeability. However, we discuss global-scale compilations that suggest some numericalconstraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeologycan be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessiblewith ongoing advances in modeling software.
机译:热液矿床代表了流体流动,热能和溶质通量的汇聚,这在水文地质学上是不寻常的。从水文地质学的角度来看,热液矿床沉积是一个复杂的耦合流问题-足够复杂,以物理方式严格描述了热学(T),水力(H),机械(M)和化学(C)过程(THMC建模)挑战我们的计算能力。尽管对这些耦合行为的研究仅发现了数量有限的子集,但它对包括沉积,变质和岩浆在内的各种地质​​环境中的热液系统的工作产生了有价值的见解。这些见解的例子包括对可能的驱动机制,流体流动的速率和路径,矿石-矿物沉淀机制,热液系统的寿命,热液流体获取其温度和成分的机理以及渗透率和其他岩石性质对热液流体的控制影响进行量化。行为。在本交流中,我们回顾了表征热液系统物理水文地质学所需的一些基本理论,并讨论了该理论如何应用于密西西比河谷型,板状铀,斑岩,超热和中海洋脊成矿系统的研究。计算最新技术的一个关键限制是无法描述许多矿石系统中的流体流动和运输能力,这些系统显示出反复剪切或拉伸破坏以及渗透率动态变化的证据。但是,我们讨论了全球尺度的汇编,这些汇编对均值和动态增强的地壳渗透率都提出了一些数值约束。物理水文地质学原理可能是研究热液矿石形成的有力工具,并且随着建模软件的不断发展,它们变得越来越容易获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号