...
首页> 外文期刊>Ecological Modelling >Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior
【24h】

Linking 3D spatial models of fuels and fire: Effects of spatial heterogeneity on fire behavior

机译:链接燃料和火的3D空间模型:空间异质性对火行为的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Crown fire endangers fire fighters and can have severe ecological consequences. Prediction of fire behavior in tree crowns is essential to informed decisions in fire management. Current methods used in fire management do not address variability in crown fuels. New mechanistic physics-based fire models address convective heat transfer with computational fluid dynamics (CFD) and can be used to model fire in heterogeneous crown fuels. However, the potential impacts of variability in crown fuels on fire behavior have not yet been explored. In this study we describe a new model, FUEL3D, which incorporates the pipe model theory (PMT) and a simple 3D recursive branching approach to model the distribution of fuel within individual tree crowns. FUEL3D uses forest inventory data as inputs, and stochastically retains geometric variability observed in field data. We investigate the effects of crown fuel heterogeneity on fire behavior with a CFD fire model by simulating fire under a homogeneous tree crown and a heterogeneous tree crown modeled with FUEL3D, using two different levels of surface fire intensity. Model output is used to estimate the probability of tree mortality, linking fire behavior and fire effects at the scale of an individual tree. We discovered that variability within a tree crown altered the timing, magnitude and dynamics of how fire burned through the crown; effects varied with surface fire intensity. In the lower surface fire intensity case, the heterogeneous tree crown barely ignited and would likely survive, while the homogeneous tree had nearly 80% fuel consumption and an order of magnitude difference in total net radiative heat transfer. In the higher surface fire intensity case, both cases burned readily. Differences for the homogeneous tree between the two surface fire intensity cases were minimal but were dramatic for the heterogeneous tree. These results suggest that heterogeneity within the crown causes more conditional, threshold-like interactions with fire. We conclude with discussion of implications for fire behavior modeling and fire ecology.
机译:冠火危害消防员,并可能造成严重的生态后果。对树冠中火行为的预测对于进行火情管理中的明智决策至关重要。火灾管理中使用的当前方法不能解决冠状燃料的可变性。新的基于物理学的机械火灾模型通过计算流体动力学(CFD)解决了对流传热问题,可用于对非均质冠状燃料中的火灾进行建模。然而,尚未探索冠状燃料的可变性对着火行为的潜在影响。在这项研究中,我们描述了一个新模型FUEL3D,该模型结合了管道模型理论(PMT)和简单的3D递归分支方法,可对单个树冠内的燃料分布进行建模。 FUEL3D使用森林清单数据作为输入,并随机保留在实地数据中观察到的几何变异性。我们通过使用两个不同级别的表面火强度模拟同质树冠和用FUEL3D建模的异类树冠下的火灾,利用CFD火模型研究树冠燃料异质性对火灾行为的影响。模型输出用于估计树木死亡的可能性,将火灾行为和火灾影响联系起来,形成一棵单独的树木。我们发现树冠内部的可变性改变了火在树冠上燃烧的时间,大小和动力。效果随表面火的强度而变化。在低地表火势的情况下,异质树冠几乎不会被点燃,并且很可能存活,而同质树具有近80%的燃料消耗和总净辐射热传递的数量级差异。在较高表面火力的情况下,两种情况都容易燃烧。两种表面火强度案例之间的同质树之间的差异很小,但对于异类树则差异很大。这些结果表明,树冠内的异质性会导致更多与火焰有条件的,类似阈值的相互作用。最后,我们讨论了对火灾行为建模和火灾生态的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号