首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans
【24h】

Influence of organics and silica on Fe(II) oxidation rates and cell-mineral aggregate formation by the green-sulfur Fe(II)-oxidizing bacterium Chlorobium ferrooxidans KoFox - Implications for Fe(II) oxidation in ancient oceans

机译:有机物和二氧化硅对Fe(II)绿硫氧化细菌绿铁氧体KoFox的Fe(II)氧化速率和细胞矿物质形成的影响-古代海洋中Fe(II)氧化的含义

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Most studies on microbial phototrophic Fe(II) oxidation (photoferrotrophy) have focused on purple bacteria, but recent evidence points to the importance of green-sulfur bacteria (GSB). Their recovery from modern ferruginous environments suggests that these photoferrotrophs can offer insights into how their ancient counterparts grew in Archean oceans at the time of banded iron formation (BIF) deposition. It is unknown, however, how Fe(II) oxidation rates, cell mineral aggregate formation, and Fe-mineralogy vary under environmental conditions reminiscent of the geological past. To address this, we studied the Fe(II)-oxidizer Chlorobium ferrooxidans KoFox, a GSB living in co-culture with the heterotrophic Geospirillum strain KoFum. We investigated the mineralogy of Fe(III) metabolic products at low/high light intensity, and in the presence of dissolved silica and/or fumarate. Silica and fumarate influenced the crystallinity and particle size of the produced Fe(III) minerals. The presence of silica also enhanced Fe(II) oxidation rates, especially at high light intensities, potentially by lowering Fe(II)-toxicity to the cells. Electron microscopic imaging showed no encrustation of either KoFox or KoFum cells with Fe(III)-minerals, though weak associations were observed suggesting co-sedimentation of Fe(III) with at least some biomass via these aggregates, which could support diagenetic Fe(111)-reduction. Given that GSB are presumably one of the most ancient photosynthetic organisms, and pre-date cyanobacteria, our findings, on the one hand, strengthen arguments for photoferrotrophic activity as a likely mechanism for BIF deposition on a predominantly anoxic early Earth, but, on the other hand, also suggest that preservation of remnants of Fe(II)-oxidizing GSB as microfossils in the rock record is unlikely. (C) 2016 Elsevier B.V. All rights reserved.
机译:大多数关于微生物光养性Fe(II)氧化(光铁养分)的研究都集中在紫色细菌上,但是最近的证据指出了绿色硫细菌(GSB)的重要性。它们从现代铁质环境中的恢复表明,这些光铁蛋白可以提供有关带状铁形成(BIF)沉积时古代远古生物在古代海洋中如何生长的见解。然而,在环境条件使人联想到地质过去的情况下,Fe(II)的氧化速率,细胞矿物聚集体形成和Fe矿物学如何变化是未知的。为了解决这个问题,我们研究了Fe(II)-氧化剂四氧化三铁铬铁酸钾KoFox,一种与异养地螺旋藻菌株KoFum共培养的GSB。我们研究了在低/高光强度下,在溶解的二氧化硅和/或富马酸酯存在下,Fe(III)代谢产物的矿物学。二氧化硅和富马酸盐影响所生产的Fe(III)矿物的结晶度和粒径。二氧化硅的存在还可以提高Fe(II)的氧化速率,尤其是在高光强度下,可能会降低Fe(II)对细胞的毒性。电子显微镜成像未显示KoFox或KoFum细胞与Fe(III)矿物的结壳,尽管观察到弱关联,表明Fe(III)与至少一些生物质通过这些聚集体共沉淀,可以支持成岩的Fe(111) )-减少。鉴于GSB可能是最古老的光合生物之一,并且是早于蓝藻的细菌,因此,我们的发现一方面加强了对光铁营养活性作为BIF在主要是缺氧的早期地球上沉积的可能机制的争论,但是,另一方面,也表明不太可能保存岩石中记录的铁(II)氧化的GSB残留物作为微化石。 (C)2016 Elsevier B.V.保留所有权利。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号