...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Pore structure of volcanic clasts: Measurements of permeability and electrical conductivity
【24h】

Pore structure of volcanic clasts: Measurements of permeability and electrical conductivity

机译:火山碎屑的孔隙结构:渗透率和电导率的测量

获取原文
获取原文并翻译 | 示例
           

摘要

The pore structure of volcanic clasts is examined using measurements of porosity, permeability, and electrical properties, Permeability varies by several orders of magnitude among volcanic clasts and does not depend solely upon porosity. Electrical property measurements of saturated volcanic samples illustrate the influence of pathway tortuosity and pore shape on permeability. For equivalent eruption conditions, silicic samples show higher tortuosities, smaller vesicle sizes, and lower permeabilities than mafic samples. These differences are largely due to variations in vesiculation and crystallization history, Differences between explosive and effu-sive samples reflect the relative ability of bubbles to form and maintain connected pathways during bubble expansion and collapse. Isotropic samples (variably expanded breadcrust bombs and most pumice fall samples) have pore pathways that simplify with increasing porosity, Highly vesicular anisotropic samples (e.g., tube pumice) have high permeabilities and low tortuosities parallel to pore elongation and low permeabilities and high tortuosities perpendicular to elongation. These pathways simplify with increasing deformation (i.e. tortuosity decreases as porosity decreases), until pore geometries collapse sufficiently to form intersecting cracks. More generally, Archie's Law (power law) relationships between electrical conductivity formation factor (F) and porosity (ф) have an Archie's exponent, m, between 1 and 4 (where F= φ~(-m) for low porosity volcanic clasts, However, samples with higher connected porosities (>20% for silicic samples and >50% for mafic samples) have m values that increase with increasing porosity, reaching up to 15, We also find that a single Archie's Law fit to a suite of samples is not appropriate either for sample suites with widely varying porosities or for anisotropic samples with a directional variation in measured properties, These measurements caution against simple application of cross-property relationships derived from sedimentary rocks to models of permeability in volcanic samples.
机译:使用孔隙度,渗透率和电学性质的测量来检查火山碎屑的孔隙结构。渗透率在火山碎屑之间变化几个数量级,而不仅取决于孔隙率。饱和火山岩样品的电学性质测量说明了路径曲折度和孔隙形状对渗透率的影响。对于等效的喷发条件,硅质样品比镁质样品显示出更高的曲折度,较小的囊泡大小和更低的渗透率。这些差异主要是由于囊泡形成和结晶历程的变化所致。爆炸性样品与有效样品之间的差异反映了气泡在气泡膨胀和破裂过程中形成并维持连通通道的相对能力。各向同性样品(可变膨胀的面包壳炸弹和大多数浮石秋天样品)具有随孔隙度增加而简化的孔道,高泡状各向异性样品(例如管浮石)具有与孔隙度平行的高渗透率和低曲率,垂直于垂直方向的低渗透率和高曲率伸长。这些途径随着变形的增加而简化(即,曲率随着孔隙率的降低而降低),直到孔的几何形状充分塌陷以形成相交的裂纹为止。更一般而言,电导率形成因子(F)和孔隙度(ф)之间的阿奇定律(幂定律)关系具有1到4之间的阿奇指数m(对于低孔隙度火山岩碎屑,其中F =φ〜(-m),但是,具有较高连通孔隙率的样品(硅质样品> 20%,铁镁质样品> 50%)的m值随孔隙率的增加而增加,最高可达15。我们还发现,一个阿奇定律适用于一组样品既不适用于孔隙率变化很大的样品套件,也不适用于在测量属性中具有方向变化的各向异性样品。这些测量方法警告不要将由沉积岩获得的互属性关系简单地应用于火山岩样品的渗透率模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号