...
【24h】

Temperature changes in ascending kimberlite magma

机译:上升金伯利岩岩浆的温度变化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a thermodynamical model of kimberlite magma ascent from 200 km depth and from 400 km depth. We model four different magma compositions, a basalt and a carbonatite to bound kimberlite behaviour and two intermediate cases that represent Kimberlite 1 has properties intermediate to carbonatite and basalt, and kimberlite 2 has properties that are closer to basalt. The results show that adiabatic expansion of the melt phase can be a large cooling effect during kimberlite melt ascent, accounting for 140 degrees C cooling of kimberlite 1 and similar to 90 degrees C cooling of kimberlite 2. Melts with high volatile contents are more corrosive during magma ascent, enriching the melts in MgO as olivine xenocrysts are assimilated. Kimberlite magma temperatures decrease during ascent up to the onset of rapid pressure-induced olivine crystallization. The models show that little olivine assimilation occurs during kimberlite ascent (<1%), and this implies the magma composition is set at depth and is not acquired via olivine dissolution. Latent heat release counteracts contemporaneous cooling mechanisms such as gas exsolution and lithospheric entrainment, and in this regime the magma temperature increases as the pressure decreases. At shallow levels gas exsolution and expansion become dominant processes and the magma temperature cools during the final stages of ascent. Our models suggest that shallow magma temperatures consistent with estimates from geothermetric studies (1030-1170 degrees C) occur when the volatile content of the ascending kimberlite magma is less than 10 wt.% H2O. Models where 5 wt % H2O + >= 5 wt % CO2 is exsolved are consistent with observations of approximately 25% phenocrysts and 25% xenocrysts in many kimberlites.
机译:我们提出了从200 km深度和400 km深度金伯利岩岩浆上升的热力学模型。我们模拟了四种不同的岩浆成分,即玄武岩和碳酸盐岩以约束金伯利岩的行为,并且两个代表金伯利岩1的中间情况具有的属性仅次于碳酸盐岩和玄武岩,而金伯利岩2的属性更接近玄武岩。结果表明,在金伯利岩熔体上升过程中,熔体相的绝热膨胀可能具有较大的冷却效果,这说明金伯利岩1的冷却温度为140℃,与金伯利岩2的冷却温度为90℃相似。岩浆上升,随着橄榄石异晶被同化,使MgO中的熔体富集。金伯利岩岩浆温度在上升过程中会下降,直至压力导致橄榄石快速结晶。模型显示,在金伯利岩上升过程中,橄榄石几乎没有同化作用(<1%),这意味着岩浆成分处于深处,并且不是通过橄榄石溶解而获得的。潜热释放抵消了同时的冷却机制,例如气体逸出和岩石圈夹带,在这种情况下,岩浆温度随着压力的降低而升高。在浅层,气体的溶解和膨胀成为主要过程,在上升的最后阶段,岩浆温度降低。我们的模型表明,当上升的金伯利岩岩浆的挥发物含量低于10 wt。%H2O时,将发生与地热研究(1030-1170摄氏度)的估计值一致的浅岩浆温度。溶解了5 wt%H2O +> = 5 wt%CO2的模型与许多金伯利岩中约25%的隐晶和25%的异晶的观察结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号