...
【24h】

Dynamic fault weakening and the formation of large impact craters

机译:动态断层减弱和大型撞击坑的形成

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Impact craters are the most common landform on planetary surfaces; however, the mechanics of the end stages of their formation are not fully understood. The final stage of crater formation involves the collapse of a hemispherical transient cavity. Around small craters, the limited amount of collapse preserves a bowl-shaped cavity. In contrast, the observed shallow depths and complex inner morphologies of large craters require very low shear strength in the collapsing material. Because the observed amount of collapse cannot be reproduced using quasi-static values for the frictional strength of fractured rock, a temporary weakening mechanism is necessary. Here, we investigate the hypothesis that craters collapse along a network of impact-generated faults that weaken during long displacements at high slip velocities via, for example, frictional melting. Using the CTH shock physics code, we simulate the formation of about 100-km diameter impact craters using a simple strain-rate weakening model with parameters constrained by fault friction experiments on crystalline rocks. The model reduces the coefficient of friction from a quasi-static value (0.6-0.85) to a weakened value (0.1-0.2) when a parcel of fractured material exceeds thresholds for cumulative plastic shear strain (a proxy for slip distance) and shear strain rate (a proxy for slip velocity). During crater formation, the strain-rate weakening model leads to strain localizations that are interpreted to be fault zones. Fault zones are spontaneously created and slip over discrete time intervals during collapse. The strain-rate weakening model reproduces the major geologic features observed around the largest terrestrial craters (Vredefort, Sudbury, and Chicxulub), including shallow depths, fault structures, frictional melt distributions, and deep-seated central uplifts. The good agreement between calculations and observations supports the hypothesis that small volumes of transiently weakened material in fault zones control the collapse of large impact craters.
机译:撞击坑是行星表面上最常见的地形。但是,尚未完全了解其形成阶段的机制。火山口形成的最后阶段涉及半球形瞬态腔的坍塌。在小陨石坑周围,有限的塌陷保留了碗形的洞。相反,观察到的大火山口的浅深度和复杂的内部形态在坍塌的材料中要求非常低的剪切强度。由于使用破裂岩石的摩擦强度的准静态值无法再现观察到的坍塌程度,因此需要一种临时的削弱机制。在这里,我们研究了这样一个假说,即火山口沿着冲击生成的断层网络坍塌,这些断层在高滑动速度下通过例如摩擦融化作用在长位移中会减弱。使用CTH冲击物理学代码,我们使用简单的应变速率弱化模型(其参数受断层摩擦实验对晶体岩石的约束)来模拟直径约100公里的撞击坑的形成。当一小部分破裂的材料超过累积塑性剪切应变(滑移距离的代表值)和剪切应变的阈值时,该模型将摩擦系数从准静态值(0.6-0.85)减小为弱值(0.1-0.2)。速率(滑移速度的代理)。在火山口形成过程中,应变率减弱模型导致应变局部化,这被解释为断层带。断裂带是自发形成的,在塌陷过程中会在不连续的时间间隔内滑动。应变率弱化模型再现了在最大的陆地火山口(Vredefort,Sudbury和Chicxulub)周围观测到的主要地质特征,包括浅深度,断层结构,摩擦熔体分布和深部中央隆升。计算和观测值之间的良好一致性支持以下假设:断层带中少量的瞬态弱化材料控制着大型撞击坑的坍塌。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号