...
首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Anatomy of a megathrust: The 2010 M8.8 Maule, Chile earthquake rupture zone imaged using seismic tomography
【24h】

Anatomy of a megathrust: The 2010 M8.8 Maule, Chile earthquake rupture zone imaged using seismic tomography

机译:巨型冲断层的解剖结构:使用地震层析成像技术对2010年智利莫乌尔M8.8地震破裂带进行成像

获取原文
获取原文并翻译 | 示例

摘要

Knowledge of seismic velocities in the seismogenic part of subduction zones can reveal how material properties may influence large ruptures. Observations of aftershocks that followed the 2010 Mw 8.8 Maule, Chile earthquake provide an exceptional dataset to examine the physical properties of a megathrust rupture zone. We manually analysed aftershocks from onshore seismic stations and ocean bottom seismometers to derive a 3-D velocity model of the rupture zone using local earthquake tomography. From the trench to the magmatic arc, our velocity model illuminates the main features within the subduction zone. We interpret an east-dipping high P-wave velocity anomaly (>6.9 km/s) as the subducting oceanic crust and a low P-wave velocity (<6.25 km/s) in the marine forearc as the accretionary complex. We find two large P-wave velocity anomalies (~7.8 km/s) beneath the coastline. These velocities indicate an ultramafic composition, possibly related to extension and a mantle upwelling during the Triassic. We assess the role played by physical heterogeneity in governing megathrust behaviour. Greatest slip during the Maule earthquake occurred in areas of moderate P-wave velocity (6.5-7.5 km/s), where the interface is structurally more uniform. At shallow depths, high fluid pressure likely influenced the up-dip limit of seismic activity. The high velocity bodies lie above portions of the plate interface where there was reduced coseismic slip and minimal postseismic activity. The northern velocity anomaly may have acted as a structural discontinuity within the forearc, influencing the pronounced crustal seismicity in the Pichilemu region. Our work provides evidence for how the ancient geological structure of the forearc may influence the seismic behaviour of subduction megathrusts.
机译:对俯冲带地震发生部分的地震速度的了解可以揭示出材料特性如何影响大破裂。智利2010年莫尔8.8 MW地震发生的余震观测结果提供了一个出色的数据集,可用来检查超大推力破裂带的物理性质。我们使用本地地震层析成像技术手动分析了来自岸上地震台站和海底地震仪的余震,以得出破裂带的3-D速度模型。从海沟到岩浆弧,我们的速度模型阐明了俯冲带内的主要特征。我们将东倾的高P波速度异常(> 6.9 km / s)解释为俯冲的洋壳,将海洋前臂的低P波速度异常(<6.25 km / s)解释为增生复合物。我们在海岸线下方发现了两个大的P波速度异常(〜7.8 km / s)。这些速度表明超镁铁质成分,可能与三叠纪期间的伸展和地幔上升有关。我们评估了物理异质性在控制巨推力行为中的作用。莫尔地震期间最大的滑移发生在中等P波速度(6.5-7.5 km / s)的区域,其界面在结构上更加均匀。在较浅的深度,较高的流体压力可能会影响地震活动的上倾极限。高速体位于板界面的上方,在该处,共震滑动减少,后震活动最小。北部速度异常可能已成为前臂内部的构造不连续性,影响了Pichilemu地区明显的地壳地震活动性。我们的工作为前臂的古代地质结构如何影响俯冲巨推力的地震行为提供了证据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号