首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Combining seismically derived temperature with heat flow and bathymetry to constrain the thermal structure of oceanic lithosphere
【24h】

Combining seismically derived temperature with heat flow and bathymetry to constrain the thermal structure of oceanic lithosphere

机译:将地震导出的温度与热流和测深法相结合,以约束海洋岩石圈的热结构

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The thermal structure and evolution of the oceanic lithosphere is revisited with the help of a global shear velocity model of the upper mantle. Seismic velocities of the lithospheric mantle are converted to temperatures, with a particular care dedicated to the estimation of final uncertainties. These are evaluated from a Monte Carlo error propagation, taking into account the uncertainties on velocities and those on the parameters related to the velocity-temperature relationship (mantle composition, thermoelastic properties and attenuation factor). The seismically derived temperature, averaged by age interval, serves to constrain the thermal structure of the lithosphere, together with surface heat flow and ocean depth. Using an experimentally determined thermal expansivity α, the Chablis model, which prescribes a constant heat flow at some isotherms, provides a much better fit to all data than the plate model, which imposes a constant basal temperature. Only a strongly reduced α (30% reduction) allows the latter model to achieve a joint fitting comparable to the Chablis model, and then with a fit to seismically derived temperature that remains inferior the latter model. The good fit of the plate model thus depends on a reduction of α down to the lower possible limit and relies mostly on ocean depth, whose behavior at old ages is considerably obscured by anomalous crust. The Chablis model therefore appears favored by this study, which should give new perspectives on various processes related to mantle convection and to the dynamics of the lithosphere.
机译:借助于上地幔的整体剪切速度模型,重新研究了海洋岩石圈的热结构和演化。岩石圈地幔的地震速度转换为温度,并特别注意最终不确定性的估计。这些是从蒙特卡洛误差传播评估的,其中考虑了速度的不确定性以及与速度-温度关系(地幔成分,热弹性和衰减因子)有关的参数的不确定性。地震得出的温度(按年龄间隔平均)可限制岩石圈的热结构以及地表热流和海洋深度。使用实验确定的热膨胀系数α,Chablis模型(在某些等温线处规定了恒定的热流),比施加恒定基础温度的平板模型提供了对所有数据的更好拟合。只有强烈减小的α(减小30%)才能使后一种模型获得与Chablis模型相当的接头拟合,然后与地震推导的温度拟合,后者仍不如后者。因此,板块模型的良好拟合取决于将α减小到可能的下限,并且主要依赖于海洋深度,后者在年老时的行为被异常地壳所掩盖。因此,Chablis模型似乎受到这项研究的青睐,该研究应为与地幔对流和岩石圈动力学有关的各种过程提供新的观点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号