...
【24h】

Redox-variability and controls in subduction zones from an iron-isotope perspective

机译:从铁同位素角度看俯冲带的氧化还原变化和控制

获取原文
获取原文并翻译 | 示例
           

摘要

An ongoing controversy in mantle geochemistry concerns the oxidation state of the sources of island arc lavas (IAL). Three key factors control oxidation-reduction (redox) of IAL sources: (i) metasomatism of the mantle wedge by fluids and/or melts, liberated from the underlying subducted slab; (ii) the oxidation state of the wedge prior to melting and metasomatism; and (iii) the loss of melt from IAL sources. Subsequently, magmatic differentiation by fractional crystallisation, possible crustal contamination and degassing of melts en route to and at the surface can further modify the redox states of IAL. The remote nature of sub-arc processes and the complex interplay between them render direct investigations difficult. However, a possible gauge for redox-controlled, high-temperature pre-eruptive differentiation conditions is variations in stable Fe isotope compositions (expressed here as delta Fe-57) in erupting IAL because Fe isotopes can preserve a record of sub-surface mass transfer reactions involving the major element Fe. Here we report Fe isotope compositions of bulk IAL along the active Banda arc, Indonesia, which is well known for a prominent subducted sediment input. In conjunction with other arc rocks, delta Fe-57 in erupted Banda IAL indicates that fractional crystallisation and possibly crustal contamination primarily control their Fe isotope signatures. When corrected for fractional crystallisation and filtered for contamination, arc magmas that had variable sediment melt contributions in their sources show no resolvable co-variation of delta Fe-57 with radiogenic isotope tracers. This indicates that crustal recycling in the form of subducted sediment does not alter the Fe isotope character of arc lavas, in agreement with mass balance estimates. Primitive sources of IAL, however, are clearly isotopically lighter than those sourced beneath mid-ocean ridges, indicating either preferential Fe3+-depletion in the mantle wedge by prior, delta Fe-57-heavy melt extraction, and/or addition of an isotopically-light slab-derived agent. Based on our findings and previous models of arc redox conditions, we propose a three-stage process to explain the Fe isotope composition of IAL: (i) prior melt depletion lowers Fe3+/Sigma Fe (Fe3+ over total Fe) in the residues, leaving refractory, delta Fe-57-light and possibly reduced mantle wedge protoliths beneath arcs. The oxygen fugacity (fO(2)) of these refractory protoliths may be up to -2 log(10) units reduced relative to the fayalite-magnetite-quartz synthetic oxygen buffer (Delta FMQ); (ii) oxidised, slab-derived fluids, Fe-poor but possibly rich in sulphate (i.e., S6+), trigger melting of depleted protoliths with minimal effect on delta Fe-57. Melts derived from this fluid-modified wedge source have high Fe3+/Sigma Fe, oxidised by the reduction of S6+, but importantly retain the light delta Fe-57 from their mantle wedge source; (iii) after melt liberation from the mantle wedge, arc magmas initially become progressively oxidised and isotopically heavier in Fe through fractional crystallisation of ferromagnesian silicates. In summary, reduction consequent to Fe3+-rich melt extraction and subsequent oxidation, likely by S6+-rich fluids, results in a "redox yo-yo" in IAL sources. Fractional crystallisation will further oxidise and elevate delta Fe-57 in erupting IAL.
机译:地幔地球化学方面的一个持续争议涉及岛弧熔岩(IAL)来源的氧化态。控制IAL来源的氧化还原(redox)的三个关键因素:(i)从底层俯冲板释放的流体和/或熔体对地幔楔的交代作用; (ii)楔形物在熔化和交变之前的氧化态; (iii)IAL来源的熔体损失。随后,通过分步结晶,可能的地壳污染和熔体在到达表面或在表面处的脱气而引起的岩浆分异可以进一步改变IAL的氧化还原状态。子电弧过程的远程性质以及它们之间的复杂相互作用使直接调查变得困难。但是,氧化还原控制的高温喷发前分化条件的可能衡量标准是爆发IAL时稳定的铁同位素组成(此处以δFe-57表示)的变化,因为铁同位素可以保留地下物质传质的记录涉及主要元素铁的反应。在这里,我们报告了印度尼西亚活跃的班达弧沿大块IAL的Fe同位素组成,该同位素以俯冲沉积物输入显着而闻名。与其他弧岩一起,喷发的班达IAL中的Fe-57δ指示部分结晶和可能的地壳污染主要控制了它们的Fe同位素特征。如果校正了部分结晶并进行了污染过滤,则弧岩浆在其源中具有可变的沉积物熔体贡献,表明没有Fe-57与放射性同位素示踪剂的可分辨协变。这表明,以俯冲沉积物的形式进行的地壳再循环并不会改变弧熔岩的铁同位素特征,这与质量平衡估计相符。然而,IAL的原始来源明显比同位素在海洋中部下方的来源轻,这表明通过先前的δ-Fe-57大量熔体萃取和/或添加了同位素同位素,地幔楔中的优先Fe3 +耗竭。轻薄板衍生的代理。根据我们的发现和先前的电弧氧化还原条件模型,我们提出了一个三阶段过程来解释IAL的Fe同位素组成:(i)先前的熔融耗竭会降低残余物中的Fe3 + / Sigma Fe(Fe3 +超过总Fe),从而留下耐火材料,δ-Fe-57轻质,弧下可能减少了地幔楔形原岩。这些耐火性原石的氧逸度(fO(2))相对于铁橄榄石-磁铁矿-石英合成氧缓冲液(Delta FMQ)最多可减少-2 log(10)单位; (ii)贫铁但可能富含硫酸盐(即S6 +)的氧化的,平板状流体,触发了贫化的原石熔化,对δ-Fe-57的影响最小。从这种流体改性的楔形物来源获得的熔体具有较高的Fe3 + / Sigma Fe,通过还原S6 +进行氧化,但重要的是保留了来自其地幔楔形物来源的轻度δ-Fe-57。 (iii)熔融岩从地幔楔中释放出来之后,弧状岩浆开始通过铁锰硅酸盐硅酸盐的分步结晶逐渐在Fe中被氧化并同位素加重。总而言之,富Fe3 +的熔体萃取和随后的氧化(可能是富S6 +的流体)导致的还原导致IAL源中的“氧化还原溜溜球”。分级结晶将在IAL爆发时进一步氧化并升高δFe-57。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号