首页> 外文期刊>Earth and Planetary Science Letters: A Letter Journal Devoted to the Development in Time of the Earth and Planetary System >Low-temperature plasticity of olivine during high stress deformation of peridotite at lithospheric conditions - An experimental study
【24h】

Low-temperature plasticity of olivine during high stress deformation of peridotite at lithospheric conditions - An experimental study

机译:岩石圈条件下橄榄岩高应力变形过程中橄榄石的低温可塑性-实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

Deformation experiments on natural peridotite from the Almklovdalen complex, Norway, were carried out in a Griggs-type apparatus at temperatures of 20, 300, and 600°C, confining pressures of 1.0 to 2.5GPa, and strain rates of 3.10~(-6) to 8.10~(-5)s~(-1). The experiments yield maximum differential stresses in the range of 1.0 to 2.9GPa falling mostly between Byerlee's law and Goetze's criterion and thus indicating semi-brittle behaviour. Whereas strength of samples deformed at 20°C increases significantly with increasing confining pressure, a systematic pressure-dependence of strength is not obvious at 300 and 600°C. The intracrystalline deformation features of the main constituent olivine were analysed by light and electron microscopic techniques (SEM/EBSD, TEM). Deformation microstructures systematically vary with temperature, but are insensitive to confining pressure. Samples deformed at 20°C reflect predominantly brittle failure by intragranular microcracks and shear zones. Microstructures from samples deformed at higher temperatures show evidence of low-temperature plasticity of olivine in the form of pronounced undulatory extinction associated with high dislocation densities. Pile-up of dislocations leads to the formation of either fracture arrays at 300°C or deformation lamellae parallel (100) and cellular structures at 600°C, indicating intragranular work hardening. A gradual increase in glide-controlled crystal-plastic deformation of olivine at increasing temperature is interpreted to be responsible for the variation in mechanical behaviour and microstructural characteristics. The mechanical data and microstructural observations consistently suggest a temperature for the transition from the strength-controlling dominance of brittle to crystal-plastic deformation mechanisms close to 600°C. The tested peridotite samples show a lower strength than quartzite samples at comparable experimental conditions, possibly related to crystallographic differences of olivine and quartz. The agreement between microfabrics of experimentally and naturally deformed peridotites demonstrates the importance of low-temperature plasticity of olivine during high-stress deformation at lithospheric conditions related in particular to seismic activity in the mantle.
机译:在20、300和600°C的温度,1.0至2.5GPa的围压,以及3.10〜(-6的应变率)的Griggs型仪器中对挪威Almklovdalen复合体中的天然橄榄岩进行变形实验。 )至8.10〜(-5)s〜(-1)。实验产生的最大压差在1.0至2.9GPa的范围内,主要介于Byerlee定律和Goetze准则之间,因此表明了半脆性行为。尽管在20°C下变形的样品的强度随围压的增加而显着增加,但是强度在300和600°C下的系统压力依赖性并不明显。通过光学和电子显微镜技术(SEM / EBSD,TEM)分析了主要成分橄榄石的晶内形变特征。变形微观结构会随温度而系统地变化,但对围压不敏感。在20°C下变形的样品主要反映出颗粒内微裂纹和剪切区的脆性破坏。来自在较高温度下变形的样品的微观结构显示出橄榄石的低温可塑性,表现为与高位错密度相关的明显起伏消光。位错的堆积会导致在300°C下形成断裂阵列或在100°C下形成平行变形片(100)和蜂窝状结构,表明晶内工作硬化。在升高的温度下,橄榄石的滑移控制的结晶塑性变形的逐渐增加被认为是造成机械行为和微观结构特征变化的原因。力学数据和微观结构观察一致地表明,温度从脆性的强度控制主导向晶体塑性变形机制的转变接近600°C。在可比较的实验条件下,测试的橄榄岩样品显示出比石英岩样品更低的强度,这可能与橄榄石和石英的晶体学差异有关。实验和自然变形橄榄岩的微结构之间的一致性表明,在岩石圈条件下,特别是与地幔中的地震活动有关的高应力变形过程中,橄榄石的低温可塑性很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号