...
首页> 外文期刊>ISA Transactions >Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks
【24h】

Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks

机译:具有神经网络的高性能飞机的智能自适应非线性飞行控制

获取原文
获取原文并翻译 | 示例
           

摘要

This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control system. Performance of the control system is successfully tested by performing several six-degrees-of-freedom nonlinear simulations.
机译:本文介绍了基于神经网络(NN)的高性能飞机自适应飞行控制系统的开发。这项工作的主要贡献在于,所提出的控制系统能够补偿系统的不确定性,适应飞行条件的变化并适应系统故障。基础研究可以分为两个阶段。第一阶段的目标是使用NN对非线性F-16模型的动力学行为进行建模。因此,针对飞机的三个角速率,开发了基于NN的自适应识别模型。开发了在线培训程序,以适应系统动力学的变化并提高识别精度。在此过程中,先进先出堆栈用于存储输入输出数据的特定历史记录。在每个阶段都对堆栈中的整个数据执行训练。为了加快收敛速度​​并提高实现在线学习的准确性,采用了具有信任区域方法的Levenberg-Marquardt优化方法来训练NN。第二阶段的目标是开发智能飞行控制器。提出了一种基于神经网络的自适应PID控制方案,该方案由仿真器NN,估计器NN和离散时间PID控制器组成。仿真器NN用于计算训练估计器NN所需的系统Jacobian。通过通过仿真器传播输出误差进行在线训练的估算器NN用于调整PID增益。基于NN的自适应PID控制系统被应用于控制非线性F-16模型的三个角速度。车身轴的俯仰,横摇和横摆率分别通过PID控制器反馈到电梯,副翼和方向舵执行器。最终的控制系统具有学习,自适应和容错能力。它避免了典型飞行控制系统中太多控制器参数的存储和内插需求。通过执行几个六自由度非线性仿真,成功测试了控制系统的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号