首页> 外文期刊>Inorganic Chemistry: A Research Journal that Includes Bioinorganic, Catalytic, Organometallic, Solid-State, and Synthetic Chemistry and Reaction Dynamics >Investigation of the reduced high-potential iron-sulfur protein from Chromatium vinosum and relevant model compounds: A unified picture of the electronic structure of [Fe4S4](2+) systems through magnetic and optical studies
【24h】

Investigation of the reduced high-potential iron-sulfur protein from Chromatium vinosum and relevant model compounds: A unified picture of the electronic structure of [Fe4S4](2+) systems through magnetic and optical studies

机译:伏牛染色体及其相关模型化合物中还原的高电位铁硫蛋白的研究:[Fe4S4](2+)系统的电子结构通过磁和光研究的统一图片

获取原文
获取原文并翻译 | 示例
           

摘要

Magnetization measurements and variable temperature optical spectroscopy have been used to investigate, within the 4-300 K temperature range, the electronic structure of the reduced high-potential iron protein (HiPIP) from Chromatium vinosum and the model compounds (Cat)(2)[Fe4S4(SR)(4)], where RS- = 2,4,6-triisopropylphenylthiolate (1), 2,6-diphenylphenylthiolate (2), diphenylmethylthiolate (3), 2,4,6-triisopropylbenzylthiolate (4, 4') 2,4,6-triphenylbenzylthiolate (5, 5'), 2,4,6-tri-tert-butylbenzylthiolate (6), and Cat(+) = +NEt4 (1, 2, 3, 4', 5', 6), +PPh4 (4, 5). The newly synthesized 2(2-), 3(2-), 5(2-), and 6(2-) complexes are, as 1(2-) and 4(2-), excellent models of the reduced HiPIPs: they exhibit the [Fe4S4](3+/2+) redox couple, because of the presence of bulky ligands which stabilize the [Fe4S4](3+) oxidized core. Moreover, the presence of SCH2 groups in 4(2-), 5(2-), and 6(2-), as in the [Fe4S4] protein cores, makes them good biornimetic models of the HiPIPs. The X-ray structure of 2 is reported: it crystallizes in the orthorhombic space group Pcca with no imposed symmetry and a D-2d-distorted geometry of the [Fe4S4](2+) core. Fit of the magnetization data of the reduced HiPIP and of the 1, 2, 3, 4, 5, and 6 compounds within the exchange and double exchange theoretical framework leads to exchange coupling parameters J = 261-397 cm(-1). A firm determination of the double exchange parameters B or, equivalently, the transfer integrals beta = 5B could not be achieved that way. The obtained B values remain however high, attesting thus to the strength of the spin-dependent electronic delocalization which is responsible for lowest lying electronic states being characterized by delocalized mixed-valence pairs of maximum spin 9/2. Electronic properties of these systems are then accounted for by the population of a diamagnetic ground level and excited paramagnetic triplet and quintet levels, which are respectively J and 3J above the ground level. Optical studies of 1, 2, 4', 5', and 6 but also of (NEt4)(2)[Fe4S4-(SCH2C6H5)(4)] and the isomorph (NEt4)(2)[Fe4S4(S-t-Bu)(4)] and (NEt4)(2)[Fe4Se4(S-t-Bu)(4)] compounds reveal two absorption bands in the near infrared region, at 705-760 nm and 1270-1430 nm, which appear to be characteristic of valence-delocalized and ferromagnetically coupled [Fe2X2](+) (X = S, Se) units. The B and eta values can be directly determined from the location at 10B of the low-energy band, and are respectively of 699-787 and 3497-3937 cm(-1). Both absorption bands are also present in the 77 K spectrum of the reduced HiPIP, at 700 and 1040 nm (Cerdonio, M.; Wang, R.-H.; Rawlings, J.; Gray, H. B. J. Am. Chem. Soc. 1974, 96, 6534-6535). The blue shift of the low-energy band is attributed to the inequivalent environments of the Fe sites in the protein, rather than to an increase of eta when going from the models to the HiPIP. The small differences observed in known geometries of [Fe4S4](2+) clusters, especially in the Fe-Fe distances, cannot probably lead to drastic changes in the direct Fe-Fe interactions (parameter beta) responsible for the delocalization phenomenon. These differences are however magnetostructurally significant as shown by the 261-397 cm-1 range spanned by J. The cluster's geometry, hence the efficiency of the Fe-mu(3)-S-Fe superexchange pathways, is proposed to be controlled by the more or less tight fit of the cluster within the cavity provided by its environment. [References: 77]
机译:在4-300 K的温度范围内,已使用磁化测量和可变温度光谱法研究了来自Chromatium v​​inosum和模型化合物(Cat)的还原型高电势铁蛋白(HiPIP)的电子结构[2] [ Fe4S4(SR)(4)],其中RS- = 2,4,6-三异丙基苯基硫醇盐(1),2,6-二苯基苯基硫醇盐(2),二苯基甲基硫醇盐(3),2,4,6-三异丙基苄基硫醇盐(4,4' )2,4,6-三苯基苄基硫醇盐(5,5'),2,4,6-三叔丁基苄基硫醇盐(6)和Cat(+)= + NEt4(1、2、3、4',5' ,6),+ PPh4(4,5)。新合成的2(2-),3(2-),5(2-)和6(2-)配合物是1(2-)和4(2-)还原的HiPIP的出色模型:它们表现出[Fe4S4](3 + / 2 +)氧化还原对,因为存在稳定[Fe4S4](3+)氧化核的庞大配体。此外,在[Fe4S4]蛋白核心中,SCH2基团在4(2-),5(2-)和6(2-)中的存在使它们成为HiPIP的良好仿生模型。报道了2的X射线结构:它在正交晶体空间群Pcca中结晶,没有强加的对称性,[Fe4S4](2+)核的D-2d畸变的几何形状。交换和双交换理论框架内还原的HiPIP以及1,2、3、4、5和6化合物的磁化数据的拟合导致交换耦合参数J = 261-397 cm(-1)。不能通过这种方式来确定双交换参数B或等效地等于传递积分β= 5B。然而,所获得的 B 值仍然很高,从而证明了自旋依赖性电子离域的强度,这是由位于最大自旋9/2的离域混合价对表征的最低电子态的原因。这些系统的电子特性然后由反磁性地平面和激发的顺磁性三重态和五重态能级的总量来解释,它们分别比地平面高J和3J。对1、2、4',5'和6以及(NEt4)(2)[Fe4S4-(SCH2C6H5)(4)]和同晶型(NEt4)(2)[Fe4S4(St-Bu)的光学研究(4)]和(NEt4)(2)[Fe4Se4(St-Bu)(4)]化合物在705-760 nm和1270-1430 nm处的近红外区域显示出两个吸收带,这似乎是价离域和铁磁耦合的[Fe2X2](+)(X = S,Se)单位。 B 和 beta 值可以直接从低能带的10 B 处确定,分别为699-787和3497-3937 cm(-1)。两条吸收带也存在于还原的HiPIP的77 K光谱中,分别为700和1040 nm(Cerdonio,M .; Wang,R.-H .; Rawlings,J .; Gray,HBJ Am.Chem.Soc.1974) ,96,6534-6535)。低能带的蓝移归因于蛋白质中Fe位点的不等价环境,而不是由于从模型转到HiPIP时 beta 的增加。在[Fe4S4](2+)簇的已知几何形状中观察到的微小差异,尤其是在Fe-Fe距离中,可能不会导致造成离域现象的直接Fe-Fe相互作用(参数β)发生剧烈变化。然而,这些差异在磁结构上很重要,如J所覆盖的261-397 cm-1范围所示。建议通过控制簇的几何形状,从而控制Fe-mu(3)-S-Fe超交换路径的效率。簇在其环境提供的空腔内或多或少紧密配合。 [参考:77]

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号