...
首页> 外文期刊>International Journal of Solids and Structures >Multiscale modelling of transport phenomena for materials with n-layered embedded fibres. Part I: Analytical and numerical-based approaches
【24h】

Multiscale modelling of transport phenomena for materials with n-layered embedded fibres. Part I: Analytical and numerical-based approaches

机译:具有n层嵌入纤维的材料的传输现象的多尺度建模。第一部分:基于分析和数字的方法

获取原文
获取原文并翻译 | 示例

摘要

Numerical and analytical modelling approaches are often competing to describe a desired phenomenon. However, there is no reason to look for a single method and complementarities between distinct modelling ways are always profitable. This paper, the first of a set of two consecutive papers published in this volume, provides such a modelling methods reconciliation in the case of transport phenomena acting in transversely isotropic multi-phased materials. Microstructural Finite Element Modelling (FEM) helps supplying the analytical implementation for a better description of interactions between the constituents. As an application example, the case of molecular diffusion within a unidirectional composite medium is investigated without any restriction for considering any other transport mechanism. Based on a rational microstructure description, this study proposes a model able to predict the overall diffusion tensor of the composite and investigates more particularly diffusivity effects of interphase areas and fibre packings. For this purpose, a "n-phase" Generalized Self-Consistent Scheme (GSCS) coupled with a Morphologically Representative Pattern (MRP) approach has been developed. This first part is focused on the modelling strategy and the concept of "transfer matrices" has been used. This approach is applied in Part II (Joannes and Herve-Luanco, 2016) to study the influence of fibre packings on the effective behaviour of composite materials made of insulated fibres embedded in a diffusive matrix. (C) 2016 Elsevier Ltd. All rights reserved.
机译:数值和分析建模方法经常相互竞争以描述所需现象。但是,没有理由寻找单一方法,并且不同建模方式之间的互补性总是有利可图的。本文是本卷上发表的两篇连续论文中的第一篇,它提供了在横向各向同性多相材料中发生输运现象时协调这种建模方法的方法。微结构有限元建模(FEM)帮助提供分析实现,以更好地描述组件之间的相互作用。作为一个应用实例,研究了分子在单向复合介质中扩散的情况,而没有考虑任何其他传输机理的任何限制。基于合理的微观结构描述,本研究提出了一种能够预测复合材料总扩散张量的模型,并更具体地研究了相间区域和纤维填料的扩散效应。为了这个目的,已经开发了结合形态学代表性模式(MRP)方法的“ n阶段”广义自洽方案(GSCS)。第一部分着重于建模策略,并且使用了“转移矩阵”的概念。在第二部分(Joannes和Herve-Luanco,2016)中采用了这种方法,以研究纤维填料对由嵌入扩散矩阵中的绝缘纤维制成的复合材料的有效性能的影响。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号