首页> 外文学位 >Multiscale Modelling of Electronic and Thermal Transport : Thermoelectrics, Turbostratic 2D Materials and Diamond/c-BN HEMT
【24h】

Multiscale Modelling of Electronic and Thermal Transport : Thermoelectrics, Turbostratic 2D Materials and Diamond/c-BN HEMT

机译:电子和热传输的多尺度建模:热电,Turbostratic 2D材料和Diamond / c-BN HEMT

获取原文
获取原文并翻译 | 示例

摘要

Multiscale modelling has become necessary with the advent of low dimensional devices as well as use of heterostructures which necessitates atomistic treatment of the interfaces. Multiscale methodology is able to capture the quantum mechanical atomistic details while enabling the simulation of micro-scale structures at the same time. In this thesis, multiscale modelling has been applied to study transport in thermoelectrics, turbostratic 2D MoS2/WS 2 heterostructure and diamond/c-BN high mobility electron transistor (HEMT).;The possibility of enhanced thermoelectric properties through nanostructuring is investigated theoretically in a p-type Bi2Te3/Sb 2Te3 heterostructure. A multi-scale modeling approach is adopted to account for the atomistic characteristics of the interface as well as the carrier/phonon transport properties in the larger scales. The calculations clearly illustrate the desired impact of carrier energy filtering at the potential barrier by locally boosting the power factor over a sizable distance in the well region. Further, the phonon transport analysis illustrates a considerable reduction in the thermal conductivity at the heterointerface. Both effects are expected to provide an effective means to engineer higher zT in this material system.;Next, power factor enhancement through resonant doping is explored in Bi2Te3 based on a detailed first-principles study. Of the dopant atoms investigated, it is found that the formation of resonant states may be achieved with In, Po and Na, leading potentially to significant increase in the thermoelectric efficiency at room temperature. While doping with Po forms twin resonant state peaks in the valence and conduction bands, the incorporation of Na or In results in the resonant states close to the valence band edge. Further analysis reveals the origin of these resonant states. Transport calculations are also carried out to estimate the anticipated level of enhancement.;Next, in-plane and cross-plane transport in turbostratic MoS2/WS 2 heterostructure is investigated. Since it is a major challenge in controlling the stacking orientation while growing these heterostructures, the electronic transport properties can experience a sizeable impact via misorientation. Small rotation angles lead to large unit cells with thousands of atoms necessiating an analytical tight binding approach. Tight binding model is developed for MoS2/WS2 heterostructure by fitting to DFT data which is extended to the turbostratic case. Cross-plane electronic transport is then analyzed by NEGF and Landauer formalism. It is found that in-plane transport remains largely unaffected, while inter-layer electrical resistance increases upto 10% for holes and 30% for electrons.;Finally, diamond/c-BN HEMT is proposed. Diamond is a promising material for high-power electronic applications in both the dc and rf domains. However, the predicted advantages are yet to be realized due to a number of technical challenges. In particular, n-type devices have not been feasible due to the large ionization energies and low thermodynamic solubility limits of n-dopants. Motivated by the recent advances in nonequilibrium processing, we propose and theoretically examine a diamond/c-BN HEMT that can circumvent the critical limitations. A first-principles calculation suggests the desired type-I alignment at the heterojunction of these two nearly lattice matched semiconductors. The investigation also illustrates that a large sheet carrier density in excess of 5 x 1012 cm--2 can be induced in the undoped diamond channel by the gate bias. A subsequent analysis of a simple prototype design indicates that the proposed device can achieve large current drive (∼ 10 A/cm), low Ron (∼ 0.05 mO · cm2), and high f T (∼ 300 GHz) simultaneously.
机译:随着低维设备的出现以及需要对界面进行原子处理的异质结构的使用,多尺度建模已成为必要。多尺度方法学能够捕获量子力学原子细节,同时能够同时模拟微观结构。本文采用多尺度建模方法研究了热电学,涡轮层2D MoS2 / WS 2异质结构和Diamond / c-BN高迁移率电子晶体管(HEMT)中的输运。;在理论上研究了通过纳米结构增强热电性能的可能性。 p型Bi2Te3 / Sb 2Te3异质结构。采用多尺度建模方法来考虑界面的原子特性以及更大尺度下的载流子/声子传输特性。这些计算清楚地说明了通过在阱区域中相当大的距离上局部提高功率因数,势垒处的载流子能量滤波的期望影响。此外,声子传输分析表明异质界面处的热导率显着降低。预计这两种效应都将为在该材料系统中工程化更高的zT提供有效的手段。接下来,基于详细的第一性原理研究,在Bi2Te3中探索了通过共振掺杂提高功率因数的方法。在研究的掺杂原子中,发现可以通过In,Po和Na来实现共振态的形成,从而有可能导致室温下热电效率的显着提高。当用Po掺杂在价带和导带中形成双共振态峰时,Na或In的引入导致共振态接近价带边缘。进一步的分析揭示了这些共振状态的起源。还进行了输运计算以估计增强的预期水平。接下来,研究了涡轮层状MoS2 / WS 2异质结构的面内和横面传输。由于在生长这些异质结构的同时控制堆叠方向是一个重大挑战,因此电子传输特性可能会因方向错误而受到相当大的影响。较小的旋转角会导致具有数千个原子的大晶胞,因此需要一种紧密结合的分析方法。通过对DFT数据进行拟合,为MoS2 / WS2异质结构开发了紧密结合模型,该数据已扩展到涡轮层。然后通过NEGF和Landauer形式主义分析跨平面电子传输。发现面内传输在很大程度上不受影响,而空穴的层间电阻增加高达10%,电子的层间电阻增加高达30%。最后,提出了Diamond / c-BN HEMT。金刚石是直流和射频领域大功率电子应用的有前途的材料。但是,由于许多技术挑战,预期的优势尚未实现。特别地,由于n型掺杂剂的大的电离能和低的热力学溶解度极限,因此n型器件不可行。基于非平衡加工的最新进展,我们提出并从理论上研究了可以克服关键限制的钻石/ c-BN HEMT。第一性原理计算表明在这两个几乎晶格匹配的半导体的异质结处具有所需的I型排列。研究还表明,通过栅极偏压可以在未掺杂的金刚石通道中感应出超过5 x 1012 cm--2的大薄片载体密度。对简单原型设计的后续分析表明,该器件可以同时实现大电流驱动(〜10 A / cm),低Ron(〜0.05 mO·cm2)和高f T(〜300 GHz)。

著录项

  • 作者

    Narendra, Namita.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Nanotechnology.;Electrical engineering.;Physics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 109 p.
  • 总页数 109
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:39:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号