首页> 外文期刊>International Journal of Solids and Structures >Finite element solutions for plane strain mode I crack with strain gradient effects
【24h】

Finite element solutions for plane strain mode I crack with strain gradient effects

机译:具有应变梯度效应的平面应变I型裂纹的有限元解

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom omega(i) are introduced in addition to the conventional three translational degrees of freedom mu(i). omega(i) is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l(1). Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale. (C) 2002 Elsevier Science Ltd. All rights reserved. [References: 48]
机译:在本文中,提出了一种新的具有应变梯度效应的现象学理论,以解决微观和亚微米尺度下塑性变形的尺寸依赖性。该理论适合一般耦合应力理论的框架,除常规的三个平移自由度mu(i)之外,还引入了三个旋转自由度omega(i)。 omega(i)称为微旋转,是材料旋转加颗粒相对旋转的总和。当使用新理论分析裂纹尖端场或压痕问题时,通过新的硬化定律考虑了拉伸梯度。该理论的关键特征是旋转梯度通过柯西应力与偶合应力之间的相互作用影响材料的特性。拉伸梯度的术语表示为增加切线模量的内部变量。实际上,当前新的应变梯度理论是Chen和Wang(Int。J. Plast。,印刷中)提出的应变梯度理论与Chen和Wang(Acta Mater。48(2000a)3997)给出的硬化定律的结合。 )。在本文中,我们集中于有限元方法来研究弹性幂律硬化固体的材料断裂。使用远程强加的经典K场,可以通过数值获得全场解。发现应变梯度优势区的大小由固有材料长度l(1)表征。在应变梯度主导区之外,计算得出的应力场倾向于是经典的可塑性场,然后是K场。裂纹尖端之前的应力奇异性高于经典场,并且趋于平方根奇异性,这对于通过原子尺度上的去内聚作用对材料的裂纹扩展具有重要影响。 (C)2002 Elsevier ScienceLtd。保留所有权利。 [参考:48]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号