首页> 外文期刊>International Journal of Solids and Structures >Interfacial thermal stress analysis of an elliptic inclusion with a compliant interphase layer in plane elasticity
【24h】

Interfacial thermal stress analysis of an elliptic inclusion with a compliant interphase layer in plane elasticity

机译:具有顺应性相间层的椭圆形夹杂物的界面热应力的平面弹性分析

获取原文
获取原文并翻译 | 示例
           

摘要

Stresses induced by thermal mismatch are known to be a major cause of failure in a wide variety of composite materials and devices ranging from metal-ceramic, composites to passivated interconnect lines in integrated circuits. One of the most effective procedures used to reduce these thermal stresses is the addition of a compliant intermediate or interphase layer between the different material components. This paper is concerned with the interfacial thermal stress analysis of an elliptic inclusion embedded within an infinite matrix with uniform change in temperature. A compliant interphase layer is assumed to occupy the region between the inclusion and the matrix. This interphase layer is modeled as a spring layer with vanishing thickness (henceforth referred to as the interface between the inclusion and the matrix). Its behavior is based on the assumption that tractions are continuous but displacements are discontinuous across the interface. Complex variable techniques are used to obtain infinite series representations of the thermal stresses which, when evaluated numerically, demonstrate how the peak interfacial thermal stresses vary with the aspect ratio of the inclusion and the parameter h describing the interface. In addition, and perhaps most significantly, for different aspect ratios of the elliptic inclusion, we identify a specific value (h*) of the interface parameter h which corresponds to the maximum peak thermal stress along the inclusion-matrix interface. Similarly, for different aspect ratios, we identify a specific value of h (also referred to as h* in the paper) which corresponds to the peak maximum thermal strain energy density along the interface (J. Appl. Mcch. 57 (1990) 956-963). In each case, we plot the relationship between the new parameter h* and the aspect ratio of the ellipse. This gives significant and valuable information regarding the failure of the interface using two established failure criteria. (C) 2001 Elsevier Science Ltd. All rights reserved. [References: 33]
机译:众所周知,由热失配引起的应力是导致从金属陶瓷复合材料到集成电路中钝化互连线的各种复合材料和设备失效的主要原因。减少这些热应力的最有效方法之一是在不同材料组件之间添加顺应性中间层或相间层。本文涉及温度均匀变化的无限基质中嵌入的椭圆形夹杂物的界面热应力分析。假定顺应相间层占据了夹杂物和基质之间的区域。该相间层被建模为厚度逐渐消失的弹簧层(此后称为夹杂物和基体之间的界面)。它的行为基于以下假设:牵引力是连续的,但位移在界面上是不连续的。复杂变量技术用于获得热应力的无穷级表示,当对它们进行数值评估时,可以证明峰值界面热应力如何随夹杂物的长宽比和描述界面的参数h的变化而变化。另外,也许是最重要的是,对于椭圆形夹杂物的不同长宽比,我们确定了界面参数h的特定值(h *),该值对应于沿夹杂物-矩阵界面的最大峰值热应力。同样,对于不同的纵横比,我们确定h的特定值(在本文中也称为h *),该值对应于沿界面的最大最大热应变能密度(J. Appl。Mcch。57(1990)956) -963)。在每种情况下,我们都绘制新参数h *与椭圆的纵横比之间的关系。使用两个已建立的故障准则,这将提供有关接口故障的重要且有价值的信息。 (C)2001 Elsevier ScienceLtd。保留所有权利。 [参考:33]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号