...
首页> 外文期刊>International Journal of Solids and Structures >Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method
【24h】

Interfacial dynamic impermeable cracks analysis in dissimilar piezoelectric materials under coupled electromechanical loading with the extended finite element method

机译:机电耦合载荷作用下不同压电材料界面动态不渗透裂纹的扩展有限元分析

获取原文
获取原文并翻译 | 示例

摘要

Interfacial dynamic impermeable cracks analysis of dissimilar piezoelectric solids under coupled electromechanical impact loadings by the extended finite element method (X-FEM) is presented. The dynamic X-FEM approach recently developed by the authors is further extended to analyze transient responses of interfacial impermeable cracks in dissimilar piezoelectric structures. The mechanical displacements and electrical potential are approximated by appropriate enrichment functions that are not only for the crack-face and crack-tips, but also for the materials interfaces. In this work, we develop a new set of electro-mechanical enrichment functions for interfacial crack-tip in piezoelectric bimaterials, which is modified from the pure mechanical twelve-fold interfacial crack-tip enrichment functions used for mechanical problems. Unlike the pure mechanical set, the new modified enrichment functions contain the electric-mechanical factor, which is determined from the electro-mechanical fields of interfacial cracks in piezoelectric bimaterials. We also present asymptotic crack-tip fields in piezoelectric bimaterials based on the Stroh's formalism, and then apply them in the evaluation of generalized dynamic intensity factors (GDIFs) via the interaction integrals. The accuracy of the proposed approach is validated by comparing the obtained GDIFs with the ones derived from boundary element method. Numerical dynamic results of interfacial cracks in piezoelectric bimaterials are investigated and some aspects of the influences of poling angles, interface inclination, impact loading, etc. on the GDIFs are analyzed. There are many important issues have found such as the accuracy of the GDIFs obtained by the present formulation is high; a pure electrical impact immediately induces non-zero GDIFs, while the elastic waves caused by the mechanical impact need some time to reach and excite the crack; the effect of polarization on the GDIFs is significant; the behaviors of the GDIFs are complicated and their peak values decrease with increasing poling angles; the interface inclination angle of cracks greatly alters the GDIFs; and the interfacial crack growth may be delayed either by the effects of polarization or the electrical impacts. (C) 2015 Elsevier Ltd. All rights reserved.
机译:利用扩展有限元方法(X-FEM),对耦合压电冲击载荷作用下不同压电固体的界面动态不渗透裂纹进行了分析。作者最近开发的动态X-FEM方法进一步扩展为分析不同压电结构中界面不可渗透裂缝的瞬态响应。机械位移和电势可以通过适当的富集函数进行估算,这些函数不仅适用于裂纹面和裂纹尖端,还适用于材料界面。在这项工作中,我们为压电双材料中的界面裂纹尖端开发了一套新的机电富集函数,该函数是从用于解决机械问题的纯机械十二倍界面裂纹尖端富集函数中修改而来的。与纯机械装置不同,新的改进的富集函数包含机电系数,该系数由压电双材料中界面裂纹的机电场确定。我们还基于Stroh的形式主义提出了压电双材料中的渐近裂纹尖端场,然后通过相互作用积分将其应用于广义动态强度因子(GDIF)的评估中。通过比较所获得的GDIF和边界元方法得出的GDIF,验证了所提方法的准确性。研究了压电双材料界面裂纹的数值动力学结果,并分析了极化角,界面倾角,冲击载荷等因素对GDIFs的影响。已经发现许多重要的问题,例如,通过本发明的制剂获得的GDIF的准确性很高。纯电冲击立即感应出非零的GDIF,而机械冲击引起的弹性波则需要一段时间才能到达并激发裂纹。极化对GDIF的影响很大; GDIFs的行为复杂,并且其峰值随极化角的增加而减小;裂纹的界面倾角大大改变了GDIFs。极化效应或电冲击可能会延缓界面裂纹的扩展。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号