...
首页> 外文期刊>International Journal of Spectroscopy >Size-Dependent Non-FRET Photoluminescence Quenching in Nanocomposites Based on Semiconductor Quantum Dots CdSe/ZnS and Functionalized Porphyrin Ligands
【24h】

Size-Dependent Non-FRET Photoluminescence Quenching in Nanocomposites Based on Semiconductor Quantum Dots CdSe/ZnS and Functionalized Porphyrin Ligands

机译:基于半导体量子点CdSe / ZnS和功能化卟啉配体的纳米复合材料中尺寸依赖的非FRET光致猝灭

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We review recent experimental work to utilize the size dependence of the luminescence quenching of colloidal semiconductor quantum dots induced by functionalized porphyrin molecules attached to the surface to describe a photoluminescence (PL) quenching process which is different from usual models of charge transfer (CT) or Foerster resonant energy transfer (FRET). Steady-state and picosecond time-resolved measurements were carried out for nanocomposites based on colloidal CdSe/ZnS and CdSe quantum dots (QDs) of various sizes and surfacely attached tetra-mesopyridyl-substituted porphyrin molecules (“Quantum Dot-Porphyrin” nanocomposites), in toluene at 295 K. It was found that the major part of the observed strong quenching of QD PL in “QD-Porphyrin” nanocomposites can neither be assigned to FRET nor to photoinduced charge transfer between the QD and the chromophore. This PL quenching depends on QD size and shell and is stronger for smaller quantum dots: QD PL quenching rate constants k_q scale inversely with the QD diameter. Based on the comparison of experimental data and quantum mechanical calculations, it has been concluded that QD PL quenching in “QD-Porphyrin” nanocomposites can be understood in terms of a tunneling of the electron (of the excited electron-hole pair) followed by a (self-) localization of the electron or formation of trap states. The major contribution to PL quenching is found to be proportional to the calculated quantum-confined exciton wave function at the QD surface. Our findings highlight that single functionalized molecules can be considered as one of the probes for the complex interface physics and dynamics of colloidal semiconductor QD.
机译:我们回顾了最近的实验工作,利用附着在表面的官能化卟啉分子诱导的胶体半导体量子点的发光猝灭的尺寸依赖性来描述光致发光(PL)猝灭过程,该过程不同于通常的电荷转移(CT)模型或福斯特共振能量转移(FRET)。基于各种尺寸的胶体CdSe / ZnS和CdSe量子点(QD)以及表面附着的四间吡啶基取代的卟啉分子(“ Quantum Dot-Porphyrin”纳米复合物),对纳米复合材料进行了稳态和皮秒时间分辨的测量,在295 K的甲苯中。发现“ QD-卟啉”纳米复合材料中观察到的QD PL强淬灭的大部分既不能归因于FRET,也不能归因于QD和发色团之间的光诱导电荷转移。 PL猝灭取决于QD尺寸和壳层,并且对于较小的量子点更强:QD PL猝灭速率常数k_q与QD直径成反比。根据实验数据和量子力学计算的比较,可以得出结论:“ QD-卟啉”纳米复合材料中的QD PL猝灭可以理解为电子(受激电子-空穴对)的隧穿,随后是电子的隧穿。电子的(自)局部化或陷阱态的形成。发现对PL猝灭的主要贡献与在QD表面计算的量子限制激子波函数成比例。我们的发现突出表明,单个功能化分子可被视为胶体半导体量子点的复杂界面物理和动力学的探针之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号