首页> 外文期刊>International Journal of Thermal Sciences >A non-equilibrium phenomenological (two-points) theory of mass and heat transfer: forces, system-source interactions and thermodynamic cycle applications
【24h】

A non-equilibrium phenomenological (two-points) theory of mass and heat transfer: forces, system-source interactions and thermodynamic cycle applications

机译:质量和热传递的非平衡现象学(两点)理论:力,系统-源相互作用和热力学循环应用

获取原文
获取原文并翻译 | 示例
       

摘要

Classic heat and mass transfer assessment bases on a "single-point" (equilibrium point) theory (SPT), where the departure from the equilibrium point proportionally drives the interaction. This paper continues author's past works [M.D. Staicovici, Internat. J. Heat Mass Transfer 43(22) (2000)4153-4173, 4175-4188; Internat J. Refrigeration 23(2) (2000)153-167] with anon-equilibrium phenomenological theory of mass and heat transfer, characterized as a "two-points" theory (TPT). The notions of coupled, non-coupled and mixed transfer and the theory two points (equilibrium and ideal) for a system-source type interaction are introduced. Natural forces governing the coupled and non-coupled transfer are given for physical/chemical interactions. The paper shows mixed transfer phenomenological coefficients and proves three theory basic theorems. According to TPT, the non-coupled mass and heat transfer is proportional to the departure from the equilibrium point, but the mixed transfer, unlike SPT, is maximized when equilibrium point approaches the ideal point. TPT is applied to the cyclic mass and heat transfer analysis, using mass conservation law, first principle of thermodynamics and the natural force conservation property, what proves to be similar to Clausius integral, but having the advantage of practical utility. TPT is applied to a mixed transfer cycle of heat pipe type and to a comparative TPT/CAN study concerning the maximum power output of the Carnot irreversible cycle. In case of the heat pipe, for the first time a non-empirical explanation concerning its high heat transfer is given, identifying heat pipe working with the mixed transfer maximization conditions. Concerning the finite-time thermodynamics application, theories are essentially concordant to hope to be coupled in future for a more realistic cycle calculation.
机译:经典的传热和传质评估基于“单点”(平衡点)理论(SPT),其中偏离平衡点按比例驱动相互作用。本文继续了作者的过去著作[M.D.斯坦科维奇,国际交流。 J.传热质量43(22)(2000)4153-4173,4175-4188; Internat J. Refrigeration 23(2)(2000)153-167],以质量和传热的非平衡现象学理论为特征,称为“两点”理论(TPT)。介绍了耦合,非耦合和混合传输的概念以及系统-源类型交互的理论两点(平衡和理想)。对于物理/化学相互作用,给出了控制耦合和非耦合传递的自然力。本文展示了混合转移现象学系数,并证明了三个理论基本定理。根据TPT,非耦合的质量和热传递与偏离平衡点成正比,但与SPT不同,当平衡点接近理想点时,混合传递最大化。利用质量守恒定律,热力学第一性原理和自然力守恒特性,将TPT应用于循环质量和传热分析,与Clausius积分相似,但具有实用性。 TPT适用于热管类型的混合传输循环,并用于有关卡诺不可逆循环的最大功率输出的TPT / CAN比较研究。对于热管,首次给出了关于其高热传递的非经验性解释,确定了在混合传递最大化条件下工作的热管。关于有限时间热力学的应用,理论上基本上是一致的,希望将来能够结合起来以进行更实际的循环计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号