首页> 外文期刊>International Journal of Microscale and Nanoscale Thermal and Fluid Transport Phenomena >COMBINED INTERPLAY OF STERIC EFFECTS AND ASYMMETRIC ZETA POTENTIAL ON ELECTROKINETIC TRANSPORT OF NON-NEWTONIAN FLUIDS THROUGH NARROW CONFINEMENTS: STUDIES ON STREAMING POTENTIAL
【24h】

COMBINED INTERPLAY OF STERIC EFFECTS AND ASYMMETRIC ZETA POTENTIAL ON ELECTROKINETIC TRANSPORT OF NON-NEWTONIAN FLUIDS THROUGH NARROW CONFINEMENTS: STUDIES ON STREAMING POTENTIAL

机译:窄约束条件下非牛顿流体电动传递的空间效应和不对称Zeta势联合作用:潜流研究

获取原文
获取原文并翻译 | 示例
       

摘要

'Lab-on-a-chip'-based analytic micro-systems commonly handle complex fluids for which standard models of Newtonian fluids are an inadequate representation. Moreover, the different confining boundaries of flow conduits in these devices are often fabricated from different materials which result in different physicochemical characterization of the surfaces. Thus, as a first step towards an advanced modeling paradigm geared towards predictive designing, the present work delineates the transport characteristics of non-Newtonian fluids through nano-scale fluidic confinements, with asymmetric wall zeta-potentials. The non-Newtonian fluids are assumed to follow constitutive relations in the form of power-laws. Under such circumstances, the influences of the underlying electrokinetic phenomenon, as primarily manifested through the induced streaming potential, on the cross-sectional flow velocity, and volumetric flow rate are detailed by adopting a semi-analytical approach. The alterations in the flow dynamics, due to variations in the streaming field induced 'back flow', triggered by increasing strength of wall zeta-potential asymmetry are nicely captured for fluids having different constitutive relations, by considering finite-size effect or steric effect of ions. It is further shown that exclusion of the steric factor from the electrokinetic analysis framework results in erroneous estimation of the involved electrokinetic effect, culminating in aphysical description of the flow characteristics. Moreover, the intrinsic role of the Stern-layer conductivity, as reflected by the Dukhin number, in estimating even more accurate electrokinetic flow characteristics is also highlighted upon.
机译:基于“单芯片实验室”的分析微系统通常处理复杂的流体,而牛顿流体的标准模型不足以代表这种复杂的流体。此外,这些装置中的流道的不同限制边界通常由不同的材料制成,这导致表面的不同物理化学特征。因此,作为朝着面向预测设计的高级建模范例迈出的第一步,本工作描述了非牛顿流体通过具有不对称壁Zeta势的纳米级流体约束层的传输特征。假定非牛顿流体遵循幂律形式的本构关系。在这种情况下,采用半解析方法详细介绍了潜在的电动现象对横截面流速和体积流速的影响,该现象主要通过感应的流势来体现。考虑到本构关系不同的流体,通过考虑有限尺寸效应或空间效应,可以很好地捕捉到由于流场诱导的“回流”变化而引起的流动动力学变化,这种变化是由壁ζ电位不对称强度的增加引起的。离子。进一步表明,从电动分析框架中排除空间因素会导致对所涉及的电动效应的错误估计,最终导致流动特性的物理描述。此外,还强调了杜肯数所反映的斯特恩层电导率在估计更精确的电动流动特性方面的内在作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号