...
首页> 外文期刊>International Journal of Neural Systems >PERCEPTUAL SUPPRESSION REVEALED BY ADAPTIVE MULTI-SCALE ENTROPY ANALYSIS OF LOCAL FIELD POTENTIAL IN MONKEY VISUAL CORTEX
【24h】

PERCEPTUAL SUPPRESSION REVEALED BY ADAPTIVE MULTI-SCALE ENTROPY ANALYSIS OF LOCAL FIELD POTENTIAL IN MONKEY VISUAL CORTEX

机译:自适应多尺度熵分析揭示猴子视觉皮层局部电位的知觉抑制

获取原文
获取原文并翻译 | 示例
           

摘要

Generalized flash suppression (GFS), in which a salient visual stimulus can be rendered invisible despite continuous retinal input, provides a rare opportunity to directly study the neural mechanism of visual perception. Previous work based on linear methods, such as spectral analysis, on local field potential (LFP) during GFS has shown that the LFP power at distinctive frequency bands are differentially modulated by perceptual suppression. Yet, the linear method alone may be insufficient for the full assessment of neural dynamic due to the fundamentally nonlinear nature of neural signals. In this study, we set forth to analyze the LFP data collected from multiple visual areas in V1, V2 and V4 of macaque monkeys while performing the GFS task using a nonlinear method - adaptive multi-scale entropy (AME) - to reveal the neural dynamic of perceptual suppression. In addition, we propose a new cross-entropy measure at multiple scales, namely adaptive multi-scale cross-entropy (AMCE), to assess the nonlinear functional connectivity between two cortical areas. We show that: (1) multi-scale entropy exhibits percept-related changes in all three areas, with higher entropy observed during perceptual suppression; (2) the magnitude of the perception-related entropy changes increases systematically over successive hierarchical stages (i.e. from lower areas V1 to V2, up to higher area V4); and (3) cross-entropy between any two cortical areas reveals higher degree of asynchrony or dissimilarity during perceptual suppression, indicating a decreased functional connectivity between cortical areas. These results, taken together, suggest that perceptual suppression is related to a reduced functional connectivity and increased uncertainty of neural responses, and the modulation of perceptual suppression is more effective at higher visual cortical areas. AME is demonstrated to be a useful technique in revealing the underlying dynamic of nonlinearonstationary neural signal.
机译:广义闪光抑制(GFS),尽管连续的视网膜输入也可以使明显的视觉刺激变得不可见,但却为直接研究视觉感知的神经机制提供了难得的机会。以前基于线性方法(例如频谱分析)对GFS进行的局部场电势(LFP)进行的工作表明,通过感知抑制对不同频段的LFP功率进行差分调制。然而,由于神经信号的根本非线性特性,仅线性方法可能不足以对神经动力学进行全面评估。在这项研究中,我们着手分析从猕猴V1,V2和V4的多个视觉区域收集的LFP数据,同时使用非线性方法-自适应多尺度熵(AME)-执行GFS任务以揭示神经动力学抑制感。此外,我们提出了一种新的多尺度交叉熵度量,即自适应多尺度交叉熵(AMCE),以评估两个皮质区域之间的非线性功能连通性。我们发现:(1)多尺度熵在所有三个区域都表现出与感知有关的变化,在感知抑制过程中观察到更高的熵; (2)与感知有关的熵变化的幅度在连续的分级阶段(即从较低的区域V1到V2,直到较高的区域V4)有系统地增加; (3)在感知抑制期间,任意两个皮质区域之间的交叉熵显示出更高程度的异步性或不相似性,表明皮质区域之间的功能连通性降低。这些结果加在一起表明,知觉抑制与功能连接性降低和神经反应的不确定性增加有关,而知觉抑制的调节在较高的视觉皮层区域更有效。 AME被证明是揭示非线性/非平稳神经信号潜在动态的有用技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号