首页> 外文期刊>International Journal of Quantum Chemistry >Matrix elements of U(2n) generators in a multishell spin-orbit basis. I. The del-operator MEs in a two-shell composite Gelfand-Paldus basis
【24h】

Matrix elements of U(2n) generators in a multishell spin-orbit basis. I. The del-operator MEs in a two-shell composite Gelfand-Paldus basis

机译:U(2n)生成器的矩阵元素以多壳自旋轨道为基础。 I.基于两层复合Gelfand-Paldus的del-operator ME

获取原文
获取原文并翻译 | 示例
       

摘要

This is the first in a series of three articles which aimed to derive the matrix elements of the U(2n) generators in a multishell spin-orbit basis. This is a basis appropriate to many-electron systems which have a natural partitioning of the orbital space and where also spin-dependent terms are included in the Hamiltonian. The method is based on a new spin-dependent unitary group approach to the many-electron correlation problem due to Gould and Paldus [M. D. Gould and J. Paldus, J. Chem. Phys. 92, 7394, (1990)]. In this approach, the matrix elements of the U(2n) generators in the U(n) x U(2)-adapted electronic Gelfand basis are determined by the matrix elements of a single Ll(n) adjoint tensor operator called the del-operator, denoted by Delta(j)(i) (1 less than or equal to i, j less than or equal to n). Delta or del is a polynomial of degree two in the U(n) matrix E = [E-j(i)]. The approach of Gould and Paldus is based on the transformation properties of the U(2n) generators as an adjoint tensor operator of U(n) x U(2) and application of the Wigner-Eckart theorem. Hence, to generalize this approach, we need to obtain formulas for the complete set of adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis. The nonzero shift coefficients are uniquely determined and may he evaluated by the methods of Gould et al. [see the above reference]. In this article, we define zero-shift adjoint coupling coefficients for the two-shell composite Gelfand-Paldus basis which are appropriate to the many-electron problem. By definition, these are proportional to the corresponding two-shell del-operator matrix elements, and it is shown that the Racah factorization lemma applies. Formulas for these coefficients are then obtained by application of the Racah factorization lemma. The zero-shift adjoint reduced Wigner coefficients required for this procedure are evaluated first. All these coefficients are needed later for the multishell case, which leads directly to the two-shell del-operator matrix elements. Finally, we discuss an application to charge and spin densities in a two-shell molecular system. (C) 1998 John Wiley & Sons. [References: 18]
机译:这是三篇系列文章中的第一篇,旨在以多壳自旋轨道为基础推导U(2n)生成器的矩阵元素。这是适用于具有轨道空间自然划分且在汉密尔顿方程中还包括自旋相关项的多电子系统的基础。该方法基于一种新的自旋依赖性unit群方法,该方法解决了因古尔德和帕尔杜斯[M. D. Gould和J. Paldus,J。Chem。物理92,7394,(1990)]。在这种方法中,在适应U(n)x U(2)的电子Gelfand基础上的U(2n)生成器的矩阵元素由单个del(-)伴随张量算子的矩阵元素确定。运算符,由Delta(j)(i)表示(1小于或等于i,j小于或等于n)。 Delta或del是U(n)矩阵E = [E-j(i)]中二阶多项式。 Gould和Paldus的方法基于作为U(n)x U(2)的伴随张量算子的U(2n)生成器的变换特性以及Wigner-Eckart定理的应用。因此,要推广这种方法,我们需要为两壳复合Gelfand-Paldus基础获得完整的伴随耦合系数集的公式。非零位移系数是唯一确定的,可以通过Gould等人的方法进行评估。 [请参阅上面的参考]。在本文中,我们为两壳复合Gelfand-Paldus基础定义零位移伴随耦合系数,该系数适合于多电子问题。根据定义,它们与相应的两层del-operator矩阵元素成比例,并且证明了Racah因式分解引理适用。然后,通过应用Racah因式分解引理获得这些系数的公式。首先评估该过程所需的零偏移伴随维格纳系数。对于多壳情况,稍后需要所有这些系数,这直接导致了两壳del-operator矩阵元素。最后,我们讨论了双壳分子系统中电荷和自旋密度的应用。 (C)1998 John Wiley&Sons。 [参考:18]

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号