首页> 外文期刊>The Journal of Chemical Physics >MATRIX ELEMENTS OF U(2N) GENERATORS IN A MULTISHELL SPIN-ORBIT BASIS .1. GENERAL FORMALISM
【24h】

MATRIX ELEMENTS OF U(2N) GENERATORS IN A MULTISHELL SPIN-ORBIT BASIS .1. GENERAL FORMALISM

机译:多壳自旋轨道基础上U(2N)生成器的矩阵元素1。一般形式

获取原文
获取原文并翻译 | 示例
           

摘要

This is the first in a series of papers which derives the matrix elements of the spin-dependent U(2n) generators in a multishell spin-orbit basis, i.e., a spin adapted composite Gelfand-Paldus basis. The advantages of such a multishell formalism are well known and well documented. The approach taken exploits the properties of the U(n) adjoint tensor operator denoted by Delta(j)(i)(1 less than or equal to i,j less than or equal to n) as defined by Gould and Paldus [IJ. Chem. Phys. 92, 7394 (1990)]. Delta is a polynomial of degree two in the U(n) matrix E=[E(j)(i)]. The unique properties of this operator allow the construction of adjoint coupling coefficients for the zero-shift components of the U(2n) generators. The Racah factorization lemma may then be applied to obtain the matrix elements of all the U(2n) generators. In this paper we investigate the underlying formalism of the approach and discuss its advantages and its relationship to the shift operator method of Gould and Battle [J. Chem. Phys. 99, 5961 (1993)]. The formalism is then applied, in the second paper of the series, to calculate the matrix elements of the del operator in a two-shell spin-orbit basis. This immediately yields the zero-shift adjoint coupling coefficients in such a basis. The del-operator matrix elements are required for the calculation of spin densities in a two-shell basis. In the third paper of the series we derive the remaining nonzero shift adjoint coupling coefficients all of which are required for the multishell case. We then use these coupling coefficients to obtain formulas for the matrix elements of the U(2n) generators in a two-shell spin-orbit basis. This result is then generalized, in the fourth paper, to the case of the multishell spin-orbit basis. Finally, we demonstrate that in the Gefand-Tsetlin limit the formula obtained is equivalent to that of Gould and Battle for a single-shell system. (C) 1996 American Institute of Physics. [References: 21]
机译:这是一系列论文中的第一篇,该论文以多壳自旋轨道为基础,即自旋适应的复合Gelfand-Paldus基础,推导了自旋相关U(2n)生成器的矩阵元素。这种多壳形式主义的优点是众所周知的,并且有据可查。所采用的方法利用了由Gould和Paldus [IJ]定义的Delta(j)(i)(1小于或等于i,j小于或等于n)表示的U(n)伴随张量算子的性质。化学物理92,7394(1990)]。 Delta是U(n)矩阵E = [E(j)(i)]中二阶多项式。该算子的独特属性允许为U(2n)发生器的零位移分量构造伴随耦合系数。然后可以应用Racah因式分解引理来获得所有U(2n)生成器的矩阵元素。在本文中,我们研究了该方法的基本形式主义,并讨论了它的优点及其与Gould and Battle [J.化学物理99,5961(1993)]。然后,在该系列的第二篇论文中,将形式主义应用于在双壳自旋轨道的基础上计算del算子的矩阵元素。在这样的基础上,这立即产生零偏移的伴随耦合系数。 del-operator矩阵元素是计算两层壳中的自旋密度所必需的。在该系列的第三篇文章中,我们得出了剩余的非零位移伴随耦合系数,这些都是多壳情况所需的。然后,我们使用这些耦合系数在两层自旋轨道的基础上获得U(2n)发生器的矩阵元素的公式。然后在第四篇论文中将此结果推广到多壳自旋轨道的情况。最后,我们证明了在Gefand-Tsetlin极限下获得的公式与单壳系统的Gould和Battle等效。 (C)1996年美国物理研究所。 [参考:21]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号