...
首页> 外文期刊>International Journal of Quantum Chemistry >From track structure to stochastic chemistry and DNA damage: Microdosimetric perspective
【24h】

From track structure to stochastic chemistry and DNA damage: Microdosimetric perspective

机译:从轨道结构到随机化学和DNA损伤:微剂量法

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of all types of ionizing radiations on higher organisms is nonspecific in the sense that all interactions occur through the agency of ionization and excitation processes. This, and the relative constancy of the amount of energy required to induce such processes, has led to the concept of absorbed dose as a quantifier for the amount of radiation delivered. However, equal doses of different radiations have different effects depending on the stopping power of the charged particles and on the temporal pattern of irradiation. Because individual energy transfers depend on neither one of these factors, it follows that the biological effectiveness of ionizing radiation depends on their spatial and temporal configuration. Microdosimetry is the study of the distribution in space and time of elementary energy deposits and their relation to subsequent damage. We discuss physico-chemical events that occur within the first microsecond following the interaction of charged particles with deoxyribonucleic acid (DNA) and argue that this particular time interval is uniquely important for understanding the biological effectiveness of radiation. Radiation biologists distinguish between direct hits and damage induced-indirectly by radicals produced in the condensed medium surrounding the DNA target. The interaction and diffusion of these radicals (primarily OH) are described with the techniques of stochastic chemistry because - unlike "regular" chemistry - their initial spatial distribution is highly nonuniform. The information thus obtained is usually summarized in terms of proximity functions or microdosimetric distributions. The ultimate object of such studies is to obtain information on specific DNA alterations (e.g., strand breaks) or chromosomal damage and correlate them to such events as mutagenesis and carcinogenesis. (C) 2000 John Wiley & Sons, Inc. [References: 36]
机译:所有类型的电离辐射对高等生物的影响都是非特异性的,因为所有相互作用都是通过电离和激发过程的作用而发生的。这以及引发这种过程所需能量的相对恒定性,导致了吸收剂量的概念,作为吸收的辐射量的量化器。但是,等剂量的不同辐射根据带电粒子的阻止能力和辐射的时间模式而具有不同的效果。由于单个的能量转移不依赖于这些因素中的任何一个,因此可以得出结论,电离辐射的生物有效性取决于其空间和时间配置。微剂量法是对基本能量沉积物的时空分布及其与后续破坏的关系的研究。我们讨论了在带电粒子与脱氧核糖核酸(DNA)相互作用后的第一毫秒内发生的物理化学事件,并认为该特定的时间间隔对于理解辐射的生物学有效性至关重要。放射生物学家区分直接命中和由DNA靶周围的浓缩介质中产生的自由基间接引起的伤害。这些自由基(主要是OH)的相互作用和扩散是用随机化学技术描述的,因为与“常规”化学不同,它们的初始空间分布高度不均匀。这样获得的信息通常以接近函数或微剂量分布的形式概括。此类研究的最终目的是获得有关特定DNA改变(例如链断裂)或染色体损伤的信息,并将它们与诱变和致癌等事件相关联。 (C)2000 John Wiley&Sons,Inc. [参考:36]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号