首页> 外文期刊>International Journal of Quantum Chemistry >Can an excess electron localize on a purine moiety in the adenine-thymine Watson-Crick base pair? A computational study
【24h】

Can an excess electron localize on a purine moiety in the adenine-thymine Watson-Crick base pair? A computational study

机译:多余的电子能定位在腺嘌呤-胸腺嘧啶沃森-克里克碱基对的嘌呤部分吗?计算研究

获取原文
获取原文并翻译 | 示例
       

摘要

The electron affinity and the propensity to electron-induced proton transfer (PIT) of hydrogen-bonded complexes between the Watson-Crick adenine-thymine pair (AT) and simple organic acid (HX), attached to adenine in the Hoogsteen-type configuration, were studied at the B3LYP/6-31+G** level. Although the carboxyl group is deprotonated at physiological pH, its neutral form, COOH, resembles the peptide bond or the amide fragment in the side chain of asparagine (Asn) or glutamine (Gln). Thus, these complexes mimic the interaction between the DNA environment (e.g., proteins) and nucleobase pairs incorporated in the biopolymer. Electron attachment is thermodynamically feasible and adiabatic electron affinities range from 0.41 to 1.28 eV, while the vertical detachment energies of the resulting anions span the range of 0.39-2.88 eV. Low-energy activation barriers separate the anionic minima: aHX(AT) from the more stable single-PT anionic geometry, aHX(AT)-SPT, and aHX(AT)-SPT from the double-PT anionic geometry, aHX(AT)-DPT. Interaction between the adenine of the Watson-Crick AT base pair with an acidic proton donor probably counterbalances the larger EA of isolated thymine, as SOMO is almost evenly delocalized over both types of nucleic bases in the aHX(AT) anions. Moreover, as a result of PT the excess electron localizes entirely on adenine. Thus, in DNA interacting with its physiological environment, damage induced by low-energy electrons could begin, contrary to the current view, with the formation of purine anions, which are not formed in isolated DNA because of the greater stability of anionic pyrimidines. (c) 2007 Wiley Periodicals, Inc.
机译:Watson-Crick腺嘌呤-胸腺嘧啶对(AT)和简单有机酸(HX)之间的氢键合络合物的电子亲和力和对电子诱导质子转移的倾向,以Hoogsteen型构型连接至腺嘌呤,在B3LYP / 6-31 + G **水平上进行了研究。尽管羧基在生理pH下会去质子化,但其中性形式COOH类似于天冬酰胺(Asn)或谷氨酰胺(Gln)侧链中的肽键或酰胺片段。因此,这些复合物模拟了DNA环境(例如蛋白质)和掺入生物聚合物中的核碱基对之间的相互作用。电子附着在热力学上是可行的,绝热电子亲和力的范围为0.41至1.28 eV,而所得阴离子的垂直脱离能为0.39-2.88 eV。低能量激活势垒将阴离子最小值分离:aHX(AT)与更稳定的单PT阴离子几何结构aHX(AT)-SPT和aHX(AT)-SPT与双PT阴离子几何结构aHX(AT) -DPT。 Watson-Crick AT碱基对的腺嘌呤与酸性质子供体之间的相互作用可能抵消了孤立的胸腺嘧啶的较大EA,因为SOMO在aHX(AT)阴离子的两种类型的核酸碱基上几乎均匀地离域。而且,由于PT的结果,多余的电子完全位于腺嘌呤上。因此,在DNA与其生理环境相互作用的过程中,与目前的观点相反,低能电子诱导的损害可能始于嘌呤阴离子的形成,而嘌呤阴离子的形成是在分离的DNA中形成的,因为阴离子嘧啶的稳定性更高。 (c)2007年Wiley Periodicals,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号