...
首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales
【24h】

Continuum-discontinuum analysis of failure mechanisms around unsupported circular excavations in anisotropic clay shales

机译:各向异性黏土页岩无支撑圆形开挖周围破坏机理的连续非连续分析

获取原文
获取原文并翻译 | 示例
           

摘要

The stability of circular excavations in clay shales is a key issue in the drilling and tunnelling industries as well as in the field of deep geological waste storage. A large body of experimental evidence indicates that the damaged zone around these cavities is influenced by strong mechanical anisotropy induced by the layered material structure. The vast majority of numerical models adopted to date to analyse the stability of openings in layered rocks have been based on continuum mechanics principles using classic shear failure theory for elasto-plastic materials. However, a number of experimental observations demonstrate that clay shales may fail in a brittle manner under low-confinement conditions such as those characterizing the near-field of the excavation. Therefore, an alternative numerical approach based on non-linear fracture mechanics principles and the discrete element method is adopted to gain new insight into the failure process of this class of geomaterials. In order to account for the influence of clay shale microstructure on its mechanical behaviour a newly developed approach to capture the anisotropy of strength is proposed. With this numerical approach, the cohesive strength parameters of the fracture model are assumed to be a function of the relative orientation between the element bonds and the layering orientation. The effectiveness of the numerical technique is quantitatively demonstrated by simulating standard rock mechanics tests on an indurated claystone, namely Opalinus Clay. Emergent strength and deformation properties, together with the simulated fracture mechanisms, are shown to be in good agreement with experimental observations. The modelling technique is then applied to the simulation of the Excavation Damaged Zone (EDZ) around a circular tunnel in horizontally bedded Opalinus Clay. The simulated fracturing process is mainly discussed in the context of the damage mechanisms observed at the Mont Terri URL. Furthermore, the influence of in situ stress on resulting EDZ geometry is analysed together with possible implications for ground support and tunnel constructability. Modelling results highlight the importance of shear strength mobilization along bedding planes in controlling the EDZ formation process. In particular, slippage of bedding planes is shown to cause rock mass deconfinement which in turn promotes brittle failure processes in the form of spalling. The numerical technique is currently limited to two-dimensional analyses without any thermo-hydro-mechanical coupling.
机译:粘土页岩中圆形开挖的稳定性是钻井和隧道行业以及深部地质废物存储领域的关键问题。大量的实验证据表明,这些空腔周围的损坏区域受分层材料结构引起的强烈机械各向异性的影响。迄今为止,用于分析层状岩石中孔洞稳定性的大多数数值模型都是基于连续力学原理,使用经典的弹塑性材料剪切破坏理论。但是,许多实验观察结果表明,在低约束条件下(例如表征挖掘近场的条件),粘土页岩可能会以脆性方式破裂。因此,采用基于非线性断裂力学原理和离散元方法的替代数值方法,对此类土工材料的破坏过程有了新的认识。为了解决泥页岩微观结构对其力学行为的影响,提出了一种新的捕获强度各向异性的方法。通过这种数值方法,断裂模型的内聚强度参数被假定为元素键和分层方向之间的相对方向的函数。数值技术的有效性通过模拟在硬质粘土(即Opalinus粘土)上的标准岩石力学测试来定量证明。新兴的强度和变形特性,以及模拟的断裂机理,被证明与实验观察结果非常吻合。然后,将建模技术应用于水平层状Opalinus粘土中圆形隧道周围的开挖损伤区(EDZ)的模拟。主要在Mont Terri URL观察到的破坏机理的背景下讨论了模拟压裂过程。此外,分析了原位应力对所得EDZ几何形状的影响,以及对地面支撑和隧道可施工性的潜在影响。建模结果突显了在控制EDZ形成过程中沿层理面移动抗剪强度的重要性。特别地,示出了层理平面的滑动会引起岩体脱conf,进而促使剥落形式的脆性破坏过程。数值技术目前仅限于没有任何热-水-机械耦合的二维分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号