首页> 外文期刊>International Journal of Rock Mechanics and Mining Sciences >Elastic wave propagation and attenuation in a double-porosity dual-permeability medium
【24h】

Elastic wave propagation and attenuation in a double-porosity dual-permeability medium

机译:双孔双渗透介质中的弹性波传播与衰减

获取原文
获取原文并翻译 | 示例
           

摘要

To account for large-volume low-permeability storage porosity and low-volume high-permeability fracture/crack porosity in oil and gas reservoirs, phenomenological equations for the poroelastic behavior of a double porosity medium have been formulated and the coefficients in these linear equations identified. This generalization from a single porosity model increases the number of independent inertial coefficients from three to six, the number of independent drag coefficients from three to six, and the number of independent stress-strain coefficients from three to six for an isotropic applied stress and assumed isotropy of the medium. The analysis leading to physical interpretations of the inertial and drag coefficients is relatively straightforward, whereas that for the stress-strain coefficients is more tedious. In a quasistatic analysis, the physical interpretations are based upon considerations of extremes in both spatial and temporal scales. The limit of very short times is the one most pertinent for wave propagation, and in this case both matrix porosity and fractures are expected to behave in an undrained fashion, although our analysis makes no assumptions in this regard. For the very long times more relevant to reservoir drawdown, the double porosity medium behaves as an equivalent single porosity medium. At the macroscopic spatial level, the pertinent parameters (such as the total compressibility) may be determined by appropriate field tests. At the mesoscopic scale, pertinent parameters of the rock matrix can be determined directly through laboratory measurements on core, and the compressibility can be measured for a single fracture. We show explicitly how to generalize the quasistatic results to incorporate wave propagation effects and how effects that are usually attributed to squirt now under partially saturated conditions can be explained alternatively in terms of the double-porosity model. The result is therefore a theory that generalizes, but is completely consistent with, Blot's theory of poroelasticity and is valid for analysis of elastic wave data from highly fractured reservoirs. Published by Elsevier Science Ltd. [References: 50]
机译:为了解决油气藏中的大体积低渗透储层孔隙度和小体积高渗透性裂缝/裂缝孔隙度,建立了双孔隙介质孔隙弹性行为的现象学方程式,并确定了这些线性方程式中的系数。对于各向同性施加的应力和假定,从单个孔隙率模型的这种推广将独立惯性系数的数量从三增加到六个,将独立阻力系数的数量从三增加到六个,并将独立应力应变系数的数量从三增加到六个介质的各向同性。导致对惯性系数和阻力系数进行物理解释的分析相对简单,而对应力应变系数的分析则比较繁琐。在准静态分析中,物理解释是基于对时空尺度上的极端因素的考虑。极短时间的限制是与波传播最相关的限制,在这种情况下,尽管我们的分析没有对此做出任何假设,但预计基质孔隙率和裂缝都将以不排水的方式表现。在与储层回灌更相关的很长时间内,双重孔隙度介质表现为等效的单一孔隙度介质。在宏观空间水平上,可以通过适当的现场测试确定相关参数(例如总可压缩性)。在介观尺度上,可以通过在岩心上进行实验室测量直接确定岩石基质的相关参数,并且可以测量单个裂缝的可压缩性。我们明确显示了如何归纳准静态结果以包含波传播效应,以及如何现在可以在双孔隙度模型下解释部分饱和条件下通常归因于喷水的效应。因此,结果是一个可以推广但完全符合Blot孔隙弹性理论的理论,并且对分析高裂缝性储层的弹性波数据有效。由Elsevier Science Ltd.发布[参考:50]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号