...
首页> 外文期刊>International Journal of Refractory Metals & Hard Materials >Microstructures and thermal damage mechanisms of sintered polycrystalline diamond compact annealing under ambient air and vacuum conditions
【24h】

Microstructures and thermal damage mechanisms of sintered polycrystalline diamond compact annealing under ambient air and vacuum conditions

机译:环境空气和真空条件下烧结多晶金刚石压坯退火的组织和热损伤机理

获取原文
获取原文并翻译 | 示例
           

摘要

The microstructures and thermal damage mechanisms of sintered polycrystalline diamond compact (PDC) were studied in ambient air and vacuum at the temperature up to 1000 degrees C. The microstructures and compositions of the annealed PDC were characterized by white light interferometer, X-ray diffractometry (XRD), Raman spectroscopy and scanning electron microscopy (SEM). The results showed that no visible change in the morphologies of surface of PCD layers (PDC surfaces) was observed at 200 degrees C both in ambient air and vacuum. After annealing at 500 degrees C, numbers of spalling pits appeared on the PDC surface, and the stress-induced spall mechanism was the dominant thermal damage mechanism in ambient air and vacuum. With the temperature up to 800 degrees C, the annealed PDC surface in ambient air was seriously damaged with a mixed thermal damage mechanism such as graphitization, oxidation and stress-induced micro-cracks. Whereas, the thermal damage mechanism in vacuum was nearly the same as that at 500 degrees C. At 900 degrees C, only a dendritic phase of Co3O4 was contained on the annealed PDC surface due to extensive graphitization and oxidation in ambient air. When it comes to vacuum environment, many cracks were observed on the PDC surface and some fine diamond grains near the cracks spalled, which demonstrated that the thermal damage mechanisms consisted of stress-induced crack and spall mechanisms caused by the different thermal expansion coefficients between the diamond and Co phase. Compared with that at 900 degrees C, the degree of thermal damage reduced at 1000 degrees C in vacuum because of the diffusion of unevenly distributed Co. (C) 2015 Elsevier Ltd. All rights reserved.
机译:研究了烧结多晶金刚石复合片(PDC)在高达1000摄氏度的环境空气和真空中的微观结构和热损伤机理。通过白光干涉仪,X射线衍射仪( XRD),拉曼光谱和扫描电子显微镜(SEM)。结果表明,在环境空气和真空中,在200摄氏度时,都没有观察到PCD层表面(PDC表面)的形态发生明显变化。在500摄氏度下退火后,PDC表面出现大量剥落坑,应力诱发的剥落机制是环境空气和真空中的主要热破坏机制。在高达800摄氏度的温度下,环境空气中退火的PDC表面受到严重的损伤,其混合热损伤机理包括石墨化,氧化和应力诱发的微裂纹。然而,真空中的热破坏机理与500摄氏度时几乎相同。在900摄氏度时,由于周围空气中的大量石墨化和氧化作用,退火后的PDC表面仅包含Co3O4的树枝状相。在真空环境下,PDC表面观察到许多裂纹,裂纹附近有一些细小的金刚石晶粒剥落,表明热损伤机理由应力引起的裂纹和剥落机理之间的热膨胀系数不同引起。金刚石和钴相。与900摄氏度时相比,在真空中1000摄氏度时热损伤的程度降低了,这是由于分布不均匀所致。(C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号