首页> 外文期刊>International Journal of Pressure Vessels and Piping >Analysis of cyclic creep and rupture, Part 1: bounding theorems and cyclic reference stresses
【24h】

Analysis of cyclic creep and rupture, Part 1: bounding theorems and cyclic reference stresses

机译:循环蠕变和断裂分析,第1部分:边界定理和循环参考应力

获取原文
获取原文并翻译 | 示例
       

摘要

Cyclic loading on structures can produce failures not readily predicted by conventional static analysis. Ratcheting or incremental distortion leads to structural failure, and complicates the problems of creep and fatigue prediction. Predicting shakedown, ratcheting, accelerated creep and rupture, for cyclic loading, are the objectives of cyclic stress analysis. Limit load, shakedown and ratcheting analyses provide a comprehensive basis to understand static structural behaviour for ductile inelastic materials, subject to variable loading but excluding inertial dynamic effects. From them we can predict the following failure modes: - Plastic collapse. - Failure to shakedown. - Ratcheting. - Accelerated creep and rupture. This is achieved with a generalisation of the reference stress concept. Conventionally, and for steady loading, the limit load reference stress is the lowest yield stress for which the structure does not collapse. For cyclic loading two definitions are available. The more conservative is the lowest yield stress for which the structure shakes down (behaves elastically). The less conservative is the lowest yield stress for which the structure does not ratchet. They have different meanings and uses. Explaining and justifying the use of cyclic reference stresses to bound creep and rupture is the objective of Part 1. Part 2 gives examples illustrating a range of structural behaviours. The methodology of these papers involves so-called approximate methods at one level, that of inferring limiting or conservative time-dependent behaviour from time-independent elastic-plastic cyclic analyses. The elastic-plastic cyclic analyses themselves are straightforward if tedious. Some ideas and a new analysis technique are available to reduce the trial-and-error.
机译:结构上的循环载荷会产生传统的静态分析不易预测的破坏。棘轮或增量变形会导致结构破坏,并使蠕变和疲劳预测问题复杂化。预测循环载荷的震动,棘齿,加速蠕变和破裂是循环应力分析的目的。极限载荷,振动和棘轮分析为理解延性非弹性材料的静态结构行为提供了全面的基础,该结构可承受可变载荷,但不包括惯性动力效应。从中我们可以预测以下破坏模式:-塑性破坏。 -失败。 -棘轮。 -加速蠕变和断裂。这是通过参考应力概念的概括来实现的。通常,对于稳定载荷,极限载荷参考应力是结构不会塌陷的最低屈服应力。对于循环加载,有两个定义。较为保守的是结构震动(具有弹性)的最低屈服应力。保守性较低的是结构不会棘轮的最低屈服应力。它们具有不同的含义和用途。第1部分的目的是解释和证明使用循环参考应力来约束蠕变和断裂是合理的。第2部分给出了说明一系列结构行为的示例。这些论文的方法论在一个层面上涉及所谓的近似方法,即从与时间无关的弹塑性循环分析中推断有限或与时间相关的行为。如果乏味,则弹塑性循环分析本身很简单。一些想法和一种新的分析技术可用来减少反复试验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号