首页> 外文期刊>International Journal of Precision Engineering and Manufacturing >Mechanism and Experimental Investigation of Ultra High Pressure Water Jet on Rubber Cutting
【24h】

Mechanism and Experimental Investigation of Ultra High Pressure Water Jet on Rubber Cutting

机译:超高压水射流切割橡胶的机理及实验研究

获取原文
获取原文并翻译 | 示例
       

摘要

The recycle and reuse of rubber materials has become a global environment problem with the fast increasing amount of waste rubber. Compared to traditional recycle methods, ultra high pressure water jet, as a fast developing tool of cool cutting, can be used in recycling rubber materials without damaging the internal organization structure of materials. This paper investigates ultra high pressure jet cutting rubber in mechanism and experiment. Different from metallic materials and brittle materials, rubber materials are cut by the force of shear and tensile under the impinging of ultra high pressure water jet and the erosion of high speed water flow with rubber powder. The overall structure of kerf is Y shape. The upper section of Y shape is caused by shear, the middle section is resulted from both shear and tensile, and the bottom section is a result of the erosion and the tensile. The results of experiment show: (1) a significant linear correlation between cutting depth and pump pressure;(2) 2.0 mm/s is the optimal transverse velocity under the current experiment condition; (3) the cutting depth has a decreasing tendency with the stand-off distance increased. It can be concluded from orthogonal analysis that pump pressure has a signification effect on cutting depth, nozzle transverse velocity is not remarkable, and the effect of stand-off distance is not obvious.
机译:随着废橡胶量的快速增加,橡胶材料的回收和再利用已成为全球环境问题。与传统的回收方法相比,超高压水射流作为冷切割的快速发展工具,可用于回收橡胶材料而不会破坏材料的内部组织结构。本文研究了超高压喷射切割橡胶的机理和实验。与金属材料和脆性材料不同,橡胶材料在超高压水射流的冲击下以及橡胶粉对高速水流的侵蚀下,受到剪切力和拉伸力的作用而被切割。切口的整体结构为Y形。 Y形的上部分是由剪切引起的,中间的部分是由剪切和拉伸引起的,而下部分是腐蚀和拉伸的结果。实验结果表明:(1)切削深度与泵压之间存在显着的线性关系;(2)2.0 mm / s是当前实验条件下的最佳横向速度; (3)切削深度随着远距离的增加而减小。从正交分析可以得出结论,泵压对切削深度有显着影响,喷嘴横向速度不显着,对位距离的影响不明显。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号