...
首页> 外文期刊>International Journal of Pharmaceutics >Guidance of neural regeneration on the biomimetic nanostructured matrix
【24h】

Guidance of neural regeneration on the biomimetic nanostructured matrix

机译:神经再生对仿生纳米结构基质的指导

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Biomimetic materials are used for creating microsystems to control cell growth spatially and elicit specific cellular responses by combining complex biomolecules with nanostructured surfaces. Intercellular cell-to-cell and cell-to-extracellular matrix (ECM) interactions in biomimetic materials have demonstrated potential in the development of drug discovery platforms and regeneration medicine. In this study, we developed a biomimetic nanostructured matrix by using various ECM molecular layers to create a biomimetic and biocompatible environment for realizing neuronal guidance in neural regeneration medicine. Silicon-based substrates possessing nanostructures were modified using different ECM proteins and peptides to develop a biomimetic and biocompatible environment for studying neural behaviors in adhesion, proliferation, and differentiation. The substrates were flat glass, flat silicon wafers (FWs), and nanorod-structured wafers prepared using wet etching. The three substrates were then functionalized using laminin-1 peptide, PA22-2-contained active isoleucine-lysine-valine-alanine-valine (IKVAV) peptide, and poly-d-lysine (PDL), separately. When PC12 cells were cultured and differentiated on the modified substrates, the cells were able to elongate the neurites on the glass and FW, which was coated with three types of peptide. More differentiated neurons were observed on the nanorod-structured wafers coated with laminin than on those coated with IKVAV or PDL. For achieving directional guidance of neurite outgrowth, substrates exhibiting a grating pattern of nanorods were partially collapsed by the pulling force of water, leaving few nanorods, which support the net form of laminin on the surface. Furthermore, we fabricated the topological nanostructure-patterned wafer coated with laminin and successfully manipulated the extension and direction of neurites by using more than 80 μm of a single soma. This approach demonstrates potential as a facile and efficient method for guiding the direction of single axons and for enhancing neurite outgrowth in studies on nerve regenerative medicine.
机译:仿生材料用于创建微系统,以通过将复杂的生物分子与纳米结构的表面结合来在空间上控制细胞生长并引发特定的细胞反应。仿生材料中的细胞间细胞间和细胞间细胞外基质(ECM)相互作用已证明在开发药物发现平台和再生医学方面具有潜力。在这项研究中,我们通过使用各种ECM分子层来开发仿生纳米结构基质,以创建仿生和生物相容性环境,以实现神经再生医学中的神经元指导。使用不同的ECM蛋白和肽修饰具有纳米结构的硅基基质,从而开发出一种仿生和生物相容性环境,用于研究粘附,增殖和分化过程中的神经行为。基板是平板玻璃,平板硅晶片(FW)和使用湿蚀刻制备的纳米棒结构的晶片。然后分别使用层粘连蛋白1肽,包含PA22-2的活性异亮氨酸-赖氨酸-缬氨酸-丙氨酸-缬氨酸(IKVAV)肽和聚-d-赖氨酸(PDL)对三种底物进行功能化。当在修饰的底物上培养PC12细胞并使其分化时,这些细胞能够拉长玻璃杯和FW上的神经突,并用三种类型的肽包被。在涂有层粘连蛋白的纳米棒结构的晶圆上观察到的神经元比在涂有IKVAV或PDL的晶圆上观察到的神经元分化程度更高。为了实现神经突向外生长的方向性引导,表现出纳米棒光栅图案的基材在水的拉力作用下部分塌陷,仅留下很少的纳米棒,这些纳米棒在表面上支撑层粘连蛋白的净形式。此外,我们制作了涂有层粘连蛋白的拓扑纳米结构图案晶片,并通过使用超过80μm的单个体细胞成功地操纵了神经突的延伸和方向。在神经再生医学的研究中,这种方法证明了作为指导单轴突方向和增强神经突生长的简便有效方法的潜力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号