...
首页> 外文期刊>International Journal of Pharmaceutics >Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process.
【24h】

Structural modeling of drug release from biodegradable porous matrices based on a combined diffusion/erosion process.

机译:基于组合的扩散/侵蚀过程从可生物降解的多孔基质中释放药物的结构模型。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Biodegradable, porous microspheres exhibit a wide range of release profiles. We propose in this paper a unifying approach based on the dual action of diffusion and erosion to establish which mechanisms are responsible for the variety of release kinetics observed during in vitro experiments. Our modeling procedure leads to the partitioning of the matrix into multiple, identical elements, thus simplifying significantly the mathematical and numerical treatment of the problem. The model equations cannot be solved analytically, since the domain contains a moving interface, and must therefore be solved numerically, using specific methods designed for that purpose. Our model confirms the major role that the relative dominance between diffusion and erosion plays in the release kinetics. In particular, the velocity of erosion, the effective diffusion coefficient of the drug molecule in the wetted polymer, the average pore length, and the initial pore diameter are sensitive parameters, whereas the porosity and the effective diffusion coefficient of the drug in the solvent-filled pores is seen to have little influence, if any, on the release kinetics. The model is confirmed by using release data from biodegradable microspheres with different ratios of low and high molecular weight PLA. Excellent goodness of fit is achieved by varying two parameters for all types of experimental kinetics: from the typical square root of time profile to zero-order kinetics to concave release curves. We are also able to predict, by interpolation, release curves from microspheres made of intermediate, untested ratios of PLA by using a relation between two model parameters.
机译:可生物降解的多孔微球具有多种释放特性。我们在本文中提出了一种基于扩散和侵蚀的双重作用的统一方法,以确定哪些机制负责体外实验中观察到的多种释放动力学。我们的建模过程导致将矩阵划分为多个相同的元素,从而大大简化了问题的数学和数值处理。由于该域包含一个移动的界面,因此无法通过解析方式求解模型方程,因此必须使用为此目的设计的特定方法以数值方式对其进行求解。我们的模型证实了扩散和侵蚀之间的相对优势在释放动力学中起着主要作用。尤其是腐蚀速度,药物分子在润湿聚合物中的有效扩散系数,平均孔径和初始孔径是敏感参数,而药物在溶剂中的孔隙率和有效扩散系数可以看到,填充的孔对释放动力学几乎没有影响。通过使用来自具有不同比例的低分子量和高分子量PLA的可生物降解微球的释放数据来确认模型。通过为所有类型的实验动力学改变两个参数,可以获得出色的拟合优度:从典型的时间曲线的平方根到零阶动力学到凹形释放曲线。通过使用两个模型参数之间的关系,我们还能够通过插值法预测由中等,未经测试的PLA比例制成的微球的释放曲线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号