...
首页> 外文期刊>International Journal of Plant Breeding and Genetics >Ascochyta blight (Ascochyta rabiei (Pass.) Lab.) of chickpea (Cicer arietinum L.): breeding strategies for resistance.
【24h】

Ascochyta blight (Ascochyta rabiei (Pass.) Lab.) of chickpea (Cicer arietinum L.): breeding strategies for resistance.

机译:鹰嘴豆( Cicer arietinum L.)的Ascochyta枯萎病( Ascochyta rabiei (通过)实验室):抗性的育种策略。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the Mediterranean region, chickpea yield could be increased by shifting the sowing date from spring to winter. Nevertheless, this is hampered by the sensitivity of the crop to low temperatures and the fungal disease Ascochyta blight. Ascochyta blight, caused by Ascochyta rabiei (Pass.) Labr., is a devastating disease of chickpea (Cicer arietinum L.) in most of the chickpea-producing countries, including Iran. Severe epidemics of ascochyta blight have occurred many times in various production regions, often on cultivars previously thought to be resistant. The evolution of a new race or virulence form is frequently invoked to explain such outbreaks. Current cultivars only possess partial resistance to the pathogen and this level of resistance can breakdown easily because the pathogen is highly variable due to potential for sexual recombination. Although, the evaluation of the world collection of chickpea germplasm for resistance to ascochyta blight revealed a very low frequency of resistant lines, there are some resistant genotypes in chickpea germplasm which can be used in breeding programs. Marker Assisted Selection (MAS) would allow a better targeting of the desired genes. Genetic mapping in chickpea, for a long time hampered by the little variability in chickpea's genome, is today facilitated by highly polymorphic, co-dominant microsatellite based markers. More durable resistance could probably be achieved by pyramiding of resistance genes via MAS and is a major challenge for chickpea breeders. Genotypic variation has been reported for ascochyta blight resistance in chickpea using both Mendelian and Quantitative Trait Loci (QTL) analyses, with conflicting reports about the mechanism of resistance. The genetics of resistance to ascochyta blight has been extensively analysed because the disease is of great agronomic and economic importance. In this review, we summarize current situations and future prospect of necessities for changing from spring to winter sowing of chickpea as well as progresses in genome mapping and QTL analysis for ascochyta blight resistance in chickpea.Digital Object Identifier http://dx.doi.org/10.3923/ijpbg.2011.1.22
机译:在地中海地区,可通过将播种日期从春季转移到冬季来增加鹰嘴豆的产量。然而,这被农作物对低温的敏感性和真菌病Ascochyta枯萎病所阻碍。由 Ascochyta rabiei (Pass。)Labr。引起的枯萎病是在大多数生产鹰嘴豆的国家(包括以下地区)造成的一种致命的鹰嘴豆病( Cicer arietinum L.)。伊朗。在各个生产地区,多次出现严重的灰暗疫病流行,通常是在以前被认为具有抗性的品种上。人们经常援引一种新的种族或毒力形式的演变来解释这种暴发。当前的品种仅对病原体具有部分抗性,并且这种抗性水平很容易被破坏,因为由于有性重组的可能性,病原体高度可变。尽管对鹰嘴豆种质的世界种子对灰霉病抗性的评估显示抗性品系的频率非常低,但鹰嘴豆种质中仍有一些抗性基因型可用于育种程序。标记辅助选择(MAS)可以更好地靶向所需基因。鹰嘴豆基因组定位长期以来一直受到鹰嘴豆基因组变异性的限制,如今,这种遗传定位已通过高度多态,基于共居微卫星的标记得以促进。通过MAS合成抗性基因可以实现更持久的抗性,这是鹰嘴豆育种者面临的主要挑战。据报道,使用孟德尔和定量性状位点(QTL)分析对鹰嘴豆的白叶枯萎病抗性进行了基因型变异,有关抗性机理的报道相互矛盾。由于对该病具有重要的农艺学和经济重要性,因此已经对该草枯病的抗性遗传进行了广泛的分析。在这篇综述中,我们总结了鹰嘴豆春季到冬季播种的必要性的现状和未来展望,以及鹰嘴豆抗灰霉病基因组图谱和QTL分析的进展。数字对象标识符http://dx.doi。 org / 10.3923 / ijpbg.2011.1.22

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号