首页> 外文期刊>International Journal of Plasticity >Coupled porous porous plasticity Continuum damage mechanics approaches for modelling temperature driven ductile-to-brittle transition fracture in ferritic steels
【24h】

Coupled porous porous plasticity Continuum damage mechanics approaches for modelling temperature driven ductile-to-brittle transition fracture in ferritic steels

机译:耦合的多孔多孔塑性连续介质损伤力学方法,用于模拟温度驱动的铁素体钢的韧性至脆性转变断裂

获取原文
获取原文并翻译 | 示例
           

摘要

Following; (a) the observation that micro-void and micro-crack driven failure mechanisms co-exist in metallic alloys and (b) the two damage state variable definition given in Chaboche et al. (2006), two coupled porous plasticity and continuum damage mechanics approaches to assess temperature driven ductile-to-brittle transition fracture in ferritic steels have been developed. Based on hypo-elastic formulation of Gurson-Tvergaard-Needleman (GTN) thermoplasticity to account for ductile failure following void growth, continuum damage mechanics formalism have been coupled in order to account for micro-crack driven brittle fracture. Keeping GTN thermoplasticity as a basis for ductile fracture, Leckie-Hayhurst creep rupture criterion has been modified and proposed to account for brittle damage, thus cleavage, in the first model. The second approach, which is proposed following the motivation that plasticity exists in and below the lower transition region, replaces Leckie-Hayhurst model with plasticity driven damage evolution law of Lemaitre et al. (2000). Unlike commonly used cleavage models such as Ritchie et al. (1973) and Beremin (1983), both of the proposed models have been aimed to take into account blended effects of micro-voids and micro-cracks in order to capture energy dissipation and softening accompanying and prior to brittle fracture. Numerical implementation has been done for ABAQUS/Explicit and uses staggered solution based on plastic flow-damage correction structure, while its validation has been performed modeling Small Punch Fracture Experiments for P91 ferritic steel, published by Turba et al. (2011). (C) 2015 Elsevier Ltd. All rights reserved.
机译:以下; (a)观察到金属合金中同时存在微孔和微裂纹驱动的失效机制;(b)Chaboche等人给出的两种损伤状态变量定义。 (2006),开发了两种耦合的多孔塑性和连续损伤力学方法来评估温度驱动的铁素体钢的韧性到脆性转变断裂。基于Gurson-Tvergaard-Needleman(GTN)热塑性塑料的低弹性公式来说明空隙增长后的延性破坏,为了考虑微裂纹驱动的脆性断裂,已结合了连续损伤力学形式。保留GTN热塑性作为延性断裂的基础,在第一个模型中,对Leckie-Hayhurst蠕变断裂准则进行了修改,并提出了考虑脆性破坏(因此发生解理)的提议。第二种方法是在下部过渡区域内和下部存在可塑性的动机下提出的,用Lemaitre等人的可塑性驱动的损伤演化定律代替了Leckie-Hayhurst模型。 (2000)。与常用的分裂模型不同,例如Ritchie等。 (1973)和Beremin(1983),两个模型都旨在考虑微孔隙和微裂缝的混合作用,以便捕获伴随脆性破裂和脆性破裂之前的能量消散和软化。已经对ABAQUS / Explicit进行了数值实现,并使用了基于塑性流动-损伤校正结构的交错解决方案,而其验证已通过模拟Turba等人发布的P91铁素体钢的小冲孔断裂实验进行了验证。 (2011)。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号