...
首页> 外文期刊>International Journal of Plasticity >Transitioning rate sensitivities across multiple length scales: Microstructure-property relationships in the Taylor cylinder impact test on zirconium
【24h】

Transitioning rate sensitivities across multiple length scales: Microstructure-property relationships in the Taylor cylinder impact test on zirconium

机译:跨多个长度尺度的转变速率敏感性:泰勒圆柱体在锆上的冲击试验中的微观结构与性质的关系

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A finite-element based plasticity model is developed for polycrystals deformed to high strain-rates. The model is multiscale, covering from thermally activated dislocation motion on a specific crystallographic slip system (nm), to single crystal plasticity (mu m), to polycrystalline aggregate plasticity (mm), and ultimately heterogeneous deformation of the macroscale test sample (m). Within the model, the rate dependence in macroscale response arises solely from the microscopic characteristic stress to activate dislocation motion. This is accomplished by introduction of a novel methodology, used at the intermediate length scales, to relax the extraneous rate dependencies occurring as a result of the visco-plastic rate sensitive flow rule commonly associated with single crystal plasticity formulations. The multi-scale model developed here also permits simulations to be carried out in stress imposed, strain-rate imposed, and mixed stress/strain-rate-imposed boundary conditions, another advancement over previous techniques. Simulation results are presented for the deformation of high-purity Zr in a Taylor impact cylinder test. The variation in sample shape changes, texture evolution, and deformation twin fraction after the test are experimentally examined. These same quantities are calculated with the model and good agreement is achieved in all aspects. We show that without adjustment of material parameters that the thermally activated hardening model applies to much higher strain-rates (104/s-105/s) than the strain-rates used previously to characterize it. This model can be broadly applied to understanding microstructure-property relationships in high-strain-rate deformation processes that generate spatially and temporarily heterogeneous mechanical fields. (C) 2016 Elsevier Ltd. All rights reserved.
机译:针对变形为高应变速率的多晶,建立了基于有限元的可塑性模型。该模型是多尺度的,涵盖从特定晶体滑动系统上的热活化位错运动(nm)到单晶可塑性(μm),多晶聚集体可塑性(mm)以及最终宏观测试样品的异质变形(m)。 。在模型中,宏观响应中的速率相关性仅来自微观特征应力以激活位错运动。这是通过引入一种新的方法来完成的,该方法用于中间长度范围,以缓解由于通常与单晶可塑性配方相关的粘塑性速率敏感流动规律而产生的无关的速率依赖性。此处开发的多尺度模型还允许在施加的应力,施加的应变率以及混合的应力/应变率施加的边界条件下进行模拟,这是对先前技术的另一种进步。在泰勒冲击缸试验中给出了高纯Zr变形的仿真结果。实验后检查了样品形状变化,纹理演变和变形孪生分数的变化。使用该模型计算出这些相同的数量,并且在各个方面都实现了良好的一致性。我们表明,在不调整材料参数的情况下,热活化硬化模型所适用的应变率(104 / s-105 / s)远高于以前用于表征它的应变率。该模型可以广泛地应用于理解高应变率变形过程中产生空间和暂时异质性机械场的微观结构-特性关系。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号