首页> 外文期刊>International Journal of Plasticity >Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials
【24h】

Special rotational deformation and grain size effect on fracture toughness of nanocrystalline materials

机译:特殊的旋转变形和晶粒尺寸对纳米晶材料断裂韧性的影响

获取原文
获取原文并翻译 | 示例
           

摘要

A grain size-dependent model is theoretically suggested to describe the combined effects of special rotational deformation and dislocations near a mode I crack tip on the fracture toughness of nanocrystalline metals and ceramics. In the model, the special rotation deformation is driven by the external stress concentration near the crack tip, and serves as a toughening mechanism by releasing part of local stresses. The lattice dislocations consist of triple junction dislocation produced by intergrain sliding and edge dislocations emitted from the crack tip. The emitted dislocations are stopped at grain boundaries. The stress fields of these dislocations suppress future dislocation emission, and the suppression depends on grain size. The results indicate that the combination of special rotational deformation and dislocations near the crack tip can lead to an increase of critical crack intensity factor (effective fracture toughness) by several times in nanocrystalline materials at finest grain size. It is also found that the fracture toughness of nanocrystalline materials is highly sensitive to grain size and there is an ideal grain size corresponding to the best toughening effects, which is qualitatively consistent with the conclusion in previous work.
机译:理论上建议使用晶粒尺寸依赖性模型来描述I型裂纹尖端附近特殊旋转变形和位错对纳米晶金属和陶瓷断裂韧性的综合影响。在模型中,特殊的旋转变形是由裂纹尖端附近的外部应力集中驱动的,并通过释放部分局部应力而充当增韧机制。晶格位错由晶粒间滑动产生的三重结位错和从裂纹尖端发出的边缘位错组成。发出的位错在晶界处停止。这些位错的应力场抑制了将来的位错发射,并且该抑制取决于晶粒尺寸。结果表明,特殊的旋转变形和裂纹尖端附近的位错的组合可以使最大晶粒尺寸的纳米晶材料的临界裂纹强度因子(有效断裂韧性)提高数倍。还发现纳米晶材料的断裂韧性对晶粒尺寸高度敏感,并且存在与最佳增韧效果相对应的理想晶粒尺寸,其在质量上与先前工作的结论一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号