...
首页> 外文期刊>International Journal of Plasticity >An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation
【24h】

An internal state variable material model for predicting the time, thermomechanical, and stress state dependence of amorphous glassy polymers under large deformation

机译:内部状态可变材料模型,用于预测大变形下非晶态玻璃态聚合物的时间,热机械和应力状态依赖性

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents a complete theoretical accounting of the thermomechanical coupling within a viscoplastic model to predict the time, temperature, and stress state dependent mechanical behavior of amorphous glassy polymers. The foundational model formulation (Bouvard et al., 2010), developed to predict the time dependent behavior of amorphous glassy polymer, departed from the Haward and Thackray (1968) spring-dashpot representation widely used to model the mechanical behavior of polymers. Instead, the model equations were derived from within a large deformation kinematics and thermodynamics framework based upon the approach proposed by Coleman and Gurtin (1967) in which physically-based internal state variables (ISVs) were selected to accurately represent the underlying physics of the polymer deformation mechanisms. The updated model presented includes the distinction of temperature dependence. Hence, the present material model accounts for (i) the material strain softening induced by the polymer chain slippage; (ii) the material strain hardening at large strains induced by chain stretching between entanglement points; (iii) the time, temperature, and stress state dependence exhibited by polymers under deformation. The model also accounts for heat generation induced by plastic dissipation that leads to the thermal softening of the material under large deformation at medium strain rates. The material model response was compared to experimental data for an amorphous polycarbonate deformed at different strain rates, temperatures, and stress states. The simulations account for fully coupled thermomechanical applications. Good agreement was observed between the model correlation and the experimental data in compression (for both loading and unloading responses), creep, tension, and torsion for different strain rates and temperatures. Moreover, finite element simulations of a Split Hopkinson Pressure Bar compression device accurately captured the mechanical response of the material deformed under high strain rate conditions.
机译:本文介绍了粘塑性模型中热机械耦合的完整理论解释,以预测时间,温度和应力状态相关的非晶态玻璃态聚合物的力学行为。基本模型公式(Bouvard等人,2010)用于预测非晶态玻璃态聚合物的时间依赖性行为,这与广泛用于模拟聚合物力学行为的Haward和Thackray(1968)弹簧阻尼器表示法不同。取而代之的是,模型方程是基于Coleman和Gurtin(1967)提出的方法从大型变形运动学和热力学框架中得出的,在该方法中,选择了基于物理的内部状态变量(ISV)来准确表示聚合物的基础物理学。变形机制。提出的更新模型包括温度依赖性的区别。因此,本材料模型解释了(i)由聚合物链滑动引起的材料应变软化; (ii)由缠结点之间的链条拉伸引起的大应变下的材料应变硬化; (iii)聚合物在变形下表现出的时间,温度和应力状态依赖性。该模型还考虑了由塑性耗散引起的热量产生,该热量导致材料在中等应变速率下的大变形下热软化。将材料模型响应与在不同应变速率,温度和应力状态下变形的无定形聚碳酸酯的实验数据进行了比较。这些模拟说明了完全耦合的热机械应用。在不同应变速率和温度下,模型相关性与压缩(加载和卸载响应),蠕变,张力和扭转的实验数据之间观察到了很好的一致性。此外,Split Hopkinson压杆压缩设备的有限元模拟可以准确地捕获在高应变速率条件下变形的材料的机械响应。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号