首页> 外文学位 >Multi-scale Modeling of Polymer Thin Films towards Predicting Thermomechanical Behaviors of Nanomaterials under Nanoconfinement.
【24h】

Multi-scale Modeling of Polymer Thin Films towards Predicting Thermomechanical Behaviors of Nanomaterials under Nanoconfinement.

机译:聚合物薄膜的多尺度建模,以预测纳米约束下纳米材料的热机械行为。

获取原文
获取原文并翻译 | 示例

摘要

As the characteristic dimensions of polymer thin films become increasingly miniaturized in nanotechnological applications, such as nanoelectronics, coating, biosensors and functional nanocomposites, there is a growing need for understanding and predicting their thermo-mechanical responses. Nanoscale polymer thin films exhibit strong confinement effects on the key materials properties that diverge significantly from their bulk responses, such as glass-transition and elastic properties. While some progress has been made towards understanding the nanocofinement behaviors of polymer thin films and nanocomposites over the past two decades, predicting their properties is very challenging as they are greatly influenced by many factors, such as interfacial energy, cohesive interaction, and molecular weight, giving rise to the presence of interfaces and free surfaces at the nanoscale. To overcome these critical issues, in this dissertation, we have employed a novel simulation-based multi-scale modeling approach to investigate the thermo-mechanical responses of polymer thin films under nanoconfinement. In particular, we have developed a scale-bridging computational technique, called the thermo-mechanically consistent coarse-graining (TCCG) method, which employs a bottom-up modeling approach starting from all-atomistic molecular dynamics (AA-MD) simulations to obtain key materials parameters that are validated by experiments. Built upon our TCCG approach, we are able to investigate how the interface and free surface affect the glass-transition and mechanical behaviors of polymer thin films under nanoconfinement. We have also established a multi-scale modeling framework allowing the prediction of the glass transition and mechanical interphase properties of polymer-based nanocomposites as a function of interfacial energy and filler volume fraction by drawing the analogy between thin films and composites. Our multi-scale modeling framework and simulations explain the recent experimental observations on polymer nanostructures, and break new ground in predicting key structure-property relationships for polymer nanomaterials.
机译:随着聚合物薄膜的特征尺寸在诸如纳米电子学,涂层,生物传感器和功能性纳米复合材料的纳米技术应用中变得越来越小,对理解和预测其热机械响应的需求日益增长。纳米级聚合物薄膜对关键材料的性能表现出强烈的限制作用,这些性能与它们的体积响应(例如玻璃化转变和弹性)大不相同。尽管在过去的二十年中在理解聚合物薄膜和纳米复合材料的纳米共聚行为方面取得了一些进展,但是预测它们的性能非常具有挑战性,因为它们受到许多因素的极大影响,例如界面能,内聚相互作用和分子量,在纳米级产生了界面和自由表面。为了克服这些关键问题,本文采用了一种新颖的基于仿真的多尺度建模方法来研究纳米约束下聚合物薄膜的热机械响应。特别是,我们已经开发了一种称为热机械一致粗粒度(TCCG)方法的比例桥接计算技术,该技术采用了自下而上的建模方法,从全原子分子动力学(AA-MD)模拟开始获得通过实验验证的关键材料参数。基于我们的TCCG方法,我们能够研究界面和自由表面如何影响纳米约束下聚合物薄膜的玻璃化转变和机械行为。我们还建立了一个多尺度的建模框架,通过绘制薄膜和复合材料之间的类比关系,可以预测基于聚合物的纳米复合材料的玻璃化转变和机械界面性能,作为界面能和填料体积分数的函数。我们的多尺度建模框架和模拟解释了对聚合物纳米结构的最新实验观察,并在预测聚合物纳米材料的关键结构-特性关系方面开辟了新天地。

著录项

  • 作者

    Xia, Wenjie.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Mechanics.;Chemical engineering.;Mechanical engineering.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 165 p.
  • 总页数 165
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号