首页> 外文期刊>International Journal of Plasticity >Ductile damage development in two-phase metallic materials applied at cryogenic temperatures
【24h】

Ductile damage development in two-phase metallic materials applied at cryogenic temperatures

机译:在低温下应用的两相金属材料的延性破坏发展

获取原文
获取原文并翻译 | 示例
           

摘要

FCC metals and alloys are frequently used in cryogenic applications, nearly down to the temperature of absolute zero, because of their excellent physical and mechanical properties including ductility. These materials, often characterized by the low stacking fault energy (LSFE), undergo at low temperatures three distinct phenomena: dynamic strain ageing (DSA), plastic strain induced transformation from the parent phase (gamma) to the secondary phase (alpha') and evolution of micro-damage. Especially the third phenomenon leads to irreversible degradation of lattice and can accelerate the process of material failure therefore a suitable constitutive description appears to be fundamental for the correct analysis of structures applied at very low temperatures. The constitutive model presented in the paper takes into account the plastic strain induced phase transformation and the evolution of ductile damage. The FCC-BCC phase transformation results from metastability of LSFE metals and alloys at very low temperatures. The phase transformation process leads to creation of two-phase continuum where the parent phase coexists with the inclusions of secondary phase. Such heterogeneous material structure induces strong strain hardening related to two distinct mechanisms: interaction of dislocations with the inclusions and increase of tangent stiffness as a result of mixture of two phases, each characterized by different parameters. For the micro-damage evolution a generalization of the classical isotropic ductile damage concept (Chaboche, 1988a,b) to anisotropic model has been introduced. The kinetics of damage evolution is based on the accumulated plastic strain as driving force of ductile damage. The damage rate tensor depends on the strain energy density release rate (conjugate force) and on the tensor of material properties, that reflects the damage anisotropy.
机译:FCC金属和合金因其出色的物理和机械性能(包括延展性)而常用于低温应用,几乎可降至绝对零温度。这些材料通常以低堆垛层错能(LSFE)为特征,它们在低温下会经历三种不同的现象:动态应变时效(DSA),塑性应变引起的从母相(γ)到第二相(α')的转变和微损伤的演变。特别是第三种现象会导致晶格不可逆地退化,并可能加速材料破坏的过程,因此,适当的本构描述对于正确分析在非常低的温度下应用的结构似乎至关重要。本文提出的本构模型考虑了塑性应变引起的相变和延性破坏的演变。 FCC-BCC相变是由于LSFE金属和合金在非常低的温度下的亚稳定性而产生的。相变过程导致两相连续体的产生,其中母相与第二相的夹杂物共存。这种异质材料结构引起与两个不同机制有关的强应变硬化:位错与夹杂物的相互作用以及由于两相混合而导致的切线刚度增加,每个相的特征在于不同的参数。对于微损伤演化,已经引入了经典的各向同性延性破坏概念(Chaboche,1988a,b)对各向异性模型的推广。损伤演化的动力学基于累积的塑性应变作为延性损伤的驱动力。损伤率张量取决于应变能密度释放率(共轭力)和材料特性的张量,这反映了损伤的各向异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号