...
首页> 外文期刊>International Journal of Plasticity >Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells
【24h】

Large elastoplasticity under static megabar pressures: Formulation and application to compression of samples in diamond anvil cells

机译:静态兆巴压力下的大弹塑性:配制和应用于压缩金刚石砧室样品中的样品

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In high pressure research, static megabar pressures are typically produced by compression of a thin sample by two diamonds in various types of diamond anvil cells. This process is accompanied by large plastic deformation (sample thickness is reduced by a factor of 30), and finite elastic deformation of a sample and even the diamond. A thermodynamically consistent system of equations for large elastic and plastic deformation of an isotropic material obeying nonlinear elasticity and pressure dependent yield condition is formulated. The Murnaghan elasticity law and pressure-dependent J(2) plasticity are utilized. The finite-strain third-order elasticity law for cubic crystals is utilized for diamond. A computational algorithm is presented with emphasis on the stress update procedure and derivation of the consistent tangent moduli. It is implemented as a user material subroutine in the finite element code ABAQUS. Material parameters for a rhenium sample, as an example, and a diamond are calibrated based on the experimental and atomistic simulation results in the literature. The evolution of the stress and strain tensor fields in the sample and diamond is studied up to a pressure of 300 GPa. Good correspondence between numerical and experimental pressure distributions at the diamond-sample contact surface is obtained. Because there is a significant scatter of the magnitude of reported third-order single-crystal elastic moduli for diamond, their effect on strains and stresses is studied in detail. With the smaller third-order elastic moduli; the phenomenon of cupping of the diamond-sample contact surface is reproduced, which plays an important role in increasing maximum pressures for a given anvil geometry. The results provide important insight into the mechanical response in diamond anvil cells, interpretation of materials properties under extreme conditions from heterogeneous fields, and optimum design of cells for reaching the maximum static pressure in a volume sufficient for the desired measurements. (C) 2016 Elsevier Ltd. All rights reserved.
机译:在高压研究中,通常通过在各种类型的钻石砧单元中用两颗钻石对一个薄样本进行压缩来产生静态兆巴压力。此过程伴随着较大的塑性变形(样品厚度减少了30倍),以及样品甚至钻石的有限弹性变形。制定了一个热力学一致的方程组,该方程组针对各向同性材料的大的弹性和塑性变形,遵循非线性弹性和压力相关屈服条件。利用了Murnaghan弹性定律和压力相关的J(2)可塑性。金刚石利用立方晶体的有限应变三阶弹性定律。提出了一种计算算法,重点在于应力更新过程和恒定切线模量的推导。它在有限元代码ABAQUS中作为用户材料子例程实现。例如,根据文献中的实验和原子模拟结果,对a样品和金刚石的材料参数进行了校准。研究了样品和金刚石在高达300 GPa的压力下的应力和应变张量场的演变。在金刚石样品接触表面的数值和实验压力分布之间获得了良好的对应关系。由于所报告的钻石的三阶单晶弹性模量存在很大的分散性,因此将详细研究其对应变和应力的影响。具有较小的三阶弹性模量;再现了金刚石-样品接触表面的杯形现象,这对于增加给定砧座几何形状的最大压力起着重要作用。结果为深入了解金刚石砧座中的机械响应,解释异质场在极端条件下的材料特性以及为达到所需测量所需的最大静压力而达到最佳静室的最佳设计提供了重要的见识。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号