【24h】

Deployment and simulation of the ASTROD-GW formation

机译:ASTROD-GW组的部署和模拟

获取原文
获取原文并翻译 | 示例
       

摘要

Constellation or formation flying is a common concept in space Gravitational Wave (GW) mission proposals for the required interferometry implementation. The spacecraft of most of these mission proposals go to deep space and many have Earthlike orbits around the Sun. Astrodynamical Space Test of Relativity using Optical Devices optimized for Gravitation Wave detection (ASTROD-GW), Big Bang Observer (BBO) and DECIGO have spacecraft distributed in Earthlike orbits in formation. The deployment of orbit formation is an important issue for these missions. ASTROD-GW is to focus on the goal of detection of GWs. The mission orbits of the three spacecraft forming a nearly equilateral triangular array are chosen to be near the Sun-Earth Lagrange points L3, L4 and L5. The three spacecraft range interferometrically with one another with arm length about 260 million kilometers with the scientific goals including detection of GWs from Massive Black Holes (MBH) and Extreme-Mass-Ratio Black Hole Inspirals (EMRI), and using these observations to find the evolution of the equation of state of dark energy and to explore the co-evolution of MBH with galaxies. In this paper, we review the formation flying for fundamental physics missions, design the preliminary transfer orbits of the ASTROD-GW spacecraft from the separations of the launch vehicles to the mission orbits, and simulate the arm lengths of the triangular formation. From our study, the optimal delta-Vs and propellant ratios of the transfer orbits could be within about 2.5 km/s and 0.55, respectively. From the simulation of the formation for 10 years, the arm lengths of the formation vary in the range 1.73210 ± 0.00015 AU with the arm length differences varying in the range ±0.00025 AU for formation with 1° inclination to the ecliptic plane. This meets the measurement requirements. Further studies on the optimizations of deployment and orbit configurations for a period of 20 years and with inclinations between 1° to 3° are currently ongoing.
机译:星座飞行或编队飞行是太空重力波(GW)任务建议中用于实现干涉测量所需的常见概念。这些任务提议中的大多数航天器都进入了深空,许多航天器绕着太阳运行着类似地球的轨道。相对论的天文学动态空间测试使用了为重力波检测而优化的光学设备(ASTROD-GW),大爆炸观测器(BBO)和DECIGO,航天器分布在地层轨道中。轨道编排的部署是这些任务的重要问题。 ASTROD-GW将专注于检测GW的目标。选择形成近似等边三角形阵列的三个航天器的任务轨道,使其靠近太阳地球拉格朗日点L3,L4和L5。这三架航天器相互干涉,臂长约2.6亿公里,其科学目标包括探测来自大规模黑洞(MBH)和极端质量比黑洞吸气体(EMRI)的重力波,并利用这些观测结果找到演化暗能量状态方程,并探索MBH与星系的共同演化。在本文中,我们回顾了用于基本物理任务的编队飞行,设计了ASTROD-GW航天器从运载火箭分离到任务轨道的初步转移轨道,并模拟了三角形编队的臂长。从我们的研究中,转移轨道的最佳ΔVs和推进剂比分别在2.5 km / s和0.55之内。从10年的地层模拟来看,地层的臂长在1.73210±0.00015 AU范围内变化,对于与黄道面倾斜1°的地层,臂长差在±0.00025 AU范围内变化。符合测量要求。目前正在进行进一步的研究,以优化部署和轨道配置​​长达20年,且倾斜度在1°至3°之间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号