...
首页> 外文期刊>Journal of the Chemical Society. Perkin Transactions 2 >Ring-closure reactions. Part 15. Solvent effects on cyclic aralkyl ether formation by intramolecular Williamson synthesis
【24h】

Ring-closure reactions. Part 15. Solvent effects on cyclic aralkyl ether formation by intramolecular Williamson synthesis

机译:闭环反应。第 15 部分。溶剂对分子内威廉姆森合成环烷基醚形成的影响

获取原文
           

摘要

J.C.S. Perkin I1 Ring-closure Reactions. Part 15.j Solvent Effects on Cyclic Aralkyl Ether Formation by Intramolecular Williamson Synthesis By Antonella Dalla Cort, Gabriello Illuminati,' Luigi Mandolini,' and Bernard0 Masci," Centro di Studio sui Meccanismi di Reazione del Consiglio Nazionale delle Ricerche, c/o lstituto di Chimica Organica, UniversitA di Roma, 00185 Roma, Italy Product analysis, rate data, and effective mdarity (e.m.) values have been obtained for the formation of catechol polymethylene ethers by the intramdecular alkylation of o-o-bromoalkoxyphenoxides in Me,SO-water (99 : 1, v/v). Twelve ring sizes were investigated in the range 6-32. Comparison with similar data for the reaction in EtOH-water (75 : 25, v/v) (except for n 32) showed that the e.m.values are largely independent of solvent despite the large solvent effect observed in both the cyclization reaction and the related intermolecular model reaction. Small effects only were observed in the medium ring region. The main possible factors playing a role in solvent effects on intramolecular cyclization have been critically analysed in the light of the data. A THOROUGH understanding of the reactivity of intra- molecular reactions requires structural and solvation effects to be assessed on a firm experimental basis. The large rate accelerations of intra- over inter-molecular reactions (the so-called intramolecular effect) have stimulated a great deal of experimental as well as theore-tical study, which are of interest not only pev se, but also in connection with the elucidation of the mechanism of enzyme a~tion.~-~ Whereas structure effects have been the subject of several investigations, less attention has been devoted to solvent effects in spite of the fact that solvation has been suggested to have a role in the intra- molecular effe~t.39~ A suitable approach to fill this gap is to carry out a solvent-sensitive reaction in two sol- vents of basically different nature and to test ring-closure tendencies over a wide spectrum of ring sizes.A simple reaction is desirable in order to avoid com-plications arising from complex reaction mechanisms and/or possible changes in the rate-limiting step due to solvent change. The formation of catechol polymethyl- ene ethers (2) by intramolecular amp;type alkylations of (1) (2) o-o-bromoalkoxyphenoxides (1) seems to meet these conditions.In particular, the reaction of the 2-methoxy- phenoxide ion with butyl bromide, which is an inter- molecular counterpart of reaction (1) has been found to proceed in Me,SO-water (99 : 1v/v, referred to as 99 Me,SO) lo4 faster than in EtOH-water (75 : 25 v/v, referred to as 75 EtOH). The formation of the six-teen-membered ring (2; n = 16) is similarly affected by these solvent^.^. Since we have obtained rate data for cyclization re- action (1)in 75 EtOH 'for a number of ring sizes in the range 6-24, we now report similar data for 99 Me,SO solution which permit a comparison of the effect of the solvent on the effective molarity of reaction (1) over several ring sizes including 6-14, 16, and 24. The present study also includes the formation of the 32- membered ring, which is the largest polprnethylene ring compound considered so far in rate studies. RESULTS Rate measurements were carried out at 25.0 "C in S9yo Me,SO solution by monitoring the disappearance of the phenoxide absorption at 314 nm.The anions (1) were generated in situ by adding to the parent phenols a calcul-ated amount of KOH solution.6 Initial concentrations were in the range 6 x 10-5-3 x ~O-*M, i.e. low enough to ensure that the cyclization reactions are free from any appreciable contribution of second-order polymerization. First-order plots showed good linearity to at least 80 con-version and, whenever tested, the first-order rate constants (kobs)were independent of initial concentrations in the given range.The formation of the six- and seven-membered rings was too fast to be followed by conventional spectrophoto- metry. A stopped-flow technique was required in these cases. Cyclization to the six-membered ring, which is the fastest reaction studied, is also very rapid on an absolute scale, the half-life (0.7 ms) being of the same order of magnitude as the mixing time of the instrument. As pre-viously noted 6** the infinity spectra showed a residual phenoxide absorption which disappeared on adding a drop of concentrated hydrochloric acid. This phenomenon is partly due to a competing intramolecularly assisted elimin- ation of the E2 type.6** Since the side-reaction uses up another equivalent of base, the amount of KOH stock solution added at zero time was adjusted accordingly. The yields of cyclic products were calculated as 100 (1 -OD/OD,), where OD is the amount of absorption which dis- appeared upon acidification at infinity time, and OD, refers to zero time.Table 1 reports the results of the rate measure- ments and shows that, apart from the eight- and nine- membered rings, the extent of the side-reactions does not exceed 10 of the total reaction, so that only a minor cor- rection is required in most cases to convert the hobs values into the corresponding hintrrtvalues. In the case of the 24-and 32-membered rings the correction was somewhat more uncertain, because of a minor disturbance probably due to some precipitation of the products, which was still appreci- able at the lowest possible concentration, ca.5 x 10Pnr. Analysis of the kinetic solution at the end of the reaction showed that the eight-membered ring was fornied in 78 amp; 2 yield, in fairly good agreement with the value (83) estimated spectrophotonietrically. Furthermore, cyclis-ations leading to ring compounds (2; n = 11-14 and 16) have been carried out on a preparative scale under condi- tions close to those of the kinetic experiments,V with isolated yields in the range of 58-737;. TABLE1 Kinetic data for the ring-closure reactions of in !MyoMe,SO at 25 "C of Table 1 and of the effective molarity (e.m.)* data re- ported in Table 2.A complete set of e.m. values in 75:/0 EtOH at 50 "C has been reported,' except for ring size 32 whose study was made impracticable in this medium by very low solubility. Whenever possible, extrapolation to 25 "C from data at different temper- atures has been carried out on the basis of the known temperature coefficients of the rate constants.' It is worth noting that in spite of the fact that cyclisation rates are significantly faster in 99 Me,SO than in 75'j/, EtOH, rate ratios and e.m. values exhibit relatively small or, in some cases, no changes at all. In the case of the six-membered ring, the rate of formation is affected by the solvent change in exactly the same way as in the intermolecular model reaction.In some compounds with larger than six-membered rings, appreciable solvent effects are observed beyond the experimental error, allowance being made for the different temperature used. To discuss solvent effects on intramolecular reactions we may wonder to what extent the inherent reactivity of the end-groups of cto-bifunctional chain molecules is affected by possible changes in the solvation sliells around the end-groups as a function of the length of tlie chain. The simplest conceivable model is to consider the structure of the solvation shells as independent of chain length for a given cyclisation series. Examination of the entropies of activation for the present reaction in 75 EtOH,6 as well as for other cyclisation reactions,1deg; led to the suggestion that the above model is reasonably good, with the possible exclusion of the very short chains.Thus, the free energy change due to solvent reorganization when the two solvation shells surrounding the functional groups are replaced by a comtnon solv- o--OC,H,OCH,,-,Br no kobs/S-l 6 1.02 * 0.01 x lo3 7 4.07 f0.07 8 2.66 f.0.18 x 10-l 9 3.91 amp; 0.02 x 10 9.20 0.20 x 10-3 11 9.34 amp; 0.01 x 10-2 12 1.11 amp; 0.01 x 10-2 is 9.94 + 0.03 x 10-3 14 8.43 om x 10-3 16 8.79 0x3 x 10-3~ kintrs (99 Me,SO) Yield kintra (I kintrals-l (75 EtOH) 92 9.4 x 102 9 700 90 3.7 4 no0 89 2.2 x 10-1 7 300 67 2.6 x 4 600 91 8.4 x 10-3 2 400 92 8.6 x a 900 93 1.0 x 10-2 92 9.1 x 10-3 90 7.6 x 10-3 15 200 91 8.0 x 10-3 13 100 24 1.22 f0.08 x lov3 ca.95 1.2 x 10-2 5 100 32 1.25 * 0.05 x 10-2 ca. 95 1.2 x 10-2 Inter 2.95 x 10-l 9 700 a Size ol the ring to be formed. Average from 2-4 independent runs. c As based on spectrophotometric analysis. Calculated as koba (yield yo/lOO). At 25 "C. Rate con-stants in 75 EtOH were evaluated from data at different temperatures.' f The present value compares well with that (9.04 f0.1 1 x s-l) previously r~ported.~ The inter-molecular model reaction is the alkylation of 2-methoxy-phenoxide ion with butyl bromide. The rate constant (hinter) is given in 1 mol-1 s-1 (from ref. 5). DISCUSSION The rate data reported in Table 1 show that in 99 Me,SO the dependence of the reactivity on the chain length displays essentially the same features as those TABLE2 Comparison of e.m.data in 75 EtOH and 99 Me,SO for the ring-closure reactions of o--OC,H,OCH,,,-,Br E.m./M (I E.m./M E.ITl./M b Em. (75 HtOH; 50 "C) E.m. (750/, EtOFI; 25 "C) n (99 Me,SO, 25") (75 EtOII, 50") (75 EtOH, 25") Em. (99 Me2SO; 25 "C) E.m. (99 Me,SO; 25 "C) 6 3 200 3 900 3 800 7 12.5 36 25 8 0.75 1.8 0.99 9 0.088 0.31 0.19 10 0.028 0.15 0.11 11 0* 029 0.046 0.032 12 0.034 0.057 13 0.031 0.038 14 0.026 0.022 0.016 16 0.027 0.023 0.020 24 0.041 0.064 0.070 32 0.041 a This work. previously recorded in 75 EtOH,' namely, (i) a steep drop on increasing the chain length for the lower members of Gie series, (ii) the lack of a reactivity minimum in the medium ring region, and (iii) a remarkable insensitivity of the reaction rate to chain length in the large ring re- gion.The last point is further stressed by the 32-membered ring, whose ease of formation is comparable to those of other large rings. A 'loser Of reactivity data in the two vents is rendered possible by inspection of the last column 1.2 1 .o 2.9 2.0 2.3 1 .:I 3.5 2.2 5.4 3.9 1.6 1.1 1.7 1.2 0.85 0.62 0.85 0.74 1.6 1.7 From ref. 7. ation shell in the transition state assumed to be essentially constant ation series and, except for special cases,' iiimilar to the corresponding quantity for the intermolecular model reaction.The observed insensitivity of the e.m. values to solvent change indicates that in both solvents the quantities ( AG:solbsol;..)illtra.-( AG:solv.)illtrr are vanishingly * Calculated as kintra/klnter,where hinterrefers to an intermolec- ular model reaction (see footnote g in Table 1). A full definition of e.m. may be found in ref. 7. small in most cases. This is a striking result since the AGTsolv. term in an amp;2 reaction involving an anionic nucleophile is known to be quite large and should differ appreciably in the two solvents investigated. For in- stance, we have estimated that ASmlV. for the present reaction in 75 EtOH is a large positive quantity, i.e.+ 17 cal mol-l K-l, which is believed to arise mainly from extensive desolvation of the nucleophile in the transition state.The above evidence definitely demonstrates that solvation does not provide an explanation for the in- J.C.S. Perkin I1 solvent contributions to the Kintrafkjn+,er ratio occurs in two solvents which belong to neatly different categories.16 Thus, the most important factor upon transfer from the protic 75 EtOH to the essentially aprotic 99 Me,SO is the change of the inherent reactivities of the end- groups. Also, this work further emphasizes the import- ant role of the e.m. parameter in a general discussion of reactivity in intramolecular reactions. The finding that e.m. is, to a good approximation, independent of solvent, provides another illustration of its definition as a genuine, absolute measure of the ring-closure tendency of bi-functional chain molecules.tramolecular effect and that the major factor determining e.m. values is structure. Similar conclusions, although in a less straightforward manner, were drawn by Dafforn and Koshland l1 in a study of lactone and thiolactone formation in water and sulpholan, as possible models of solvation effects in enzymatic reactions, as well as by Bruice and Turner1, in an analogous comparison of anhydride formation in water and in Me,SO plus 1~-water. The most significant solvent effects, though small, are observed with the medium rings and presumably are related to the strain of the ring to be formed. It is worth noting that the e.m. values are generally higher in 75 EtOH than in 99 Me,SO.A tentative explanation may be found in terms of changing bond-breaking and bond-making contributions at the transition state in the two solvents by applying Thornton's reaction bond rules l3 to the reaction at hand. Transfer from 7576 EtOH to 99yoMe,SO will increase the nucleophilicity of the nucleophile and decrease the leaving-group ability of the leaving group. The two factors oppose each other, with the net result that motion along the re-action co-ordinate (parallel effect) will be little affected. However, the indicated solvent change would favour a simultaneous decrease of both nucleophile-carbon and carbon-leaving-group distances (perpendicular effect) and cause the transition state to be tighter and, speci- fically, the oxygen-carbon distance to be shorter in 99 Me,SO than in 75 EtOH.In consequence, the cyclic transition states leading to the medium-sized rings in 99 Me,SO should be affected to a greater extent by the steric strain typical of medium rings, i.e., transannular interactions and bond opposition forces,14 which are due to steric crowding. A final comment may be devoted briefly to the pro- blem of solvent-induced conformational changes of chain molecules and of the possible effects of these changes on the ease of cyclisation, as pointed out by Winnik.15 Although the present comparison is confined to two sol- vents only, which makes it difficult to assess subtle effects of this sortJ15 the observed behaviour, notably the virtual constancy of the e.m.values for the large rings, seems to indicate the absence of a significant influence of any pos-sible modification of the chain conformation upon trans- fer from 75 EtOH to 99y0Me,SO. As a concluding remark, we note that in spite of minor effects detected in the medium ring region, for the remaining ring sizes the essential cancellation of tlie EXPERIMENTAL The mixed solvent (99 Me,SO) and the KOH stock solution (2 x 10-2~in 93 Me,SO) were prepared, stored, and handled as before.G The apparatus was largely as pre- viously reported.G Stopped-flow kinetics were carried out on a Durrurn-Gibson stopped-flow spectrophotoineter model D-110, matched with a Hewlett-Pacltard storage oscillo- scope model 1207 R.MateviaZs.-l, 28-Dibronio-octacosane was prepared in 33 yield by a modification l7 of the Woolford procedure,18 m.p. 78-79 "C (from EtOAc) (1it.,l8 78-79 "C). 28-Bromo-octacosyl o-hydroxyphenyl ether was synthesized from 1,28- dibromo-octacosane and catechol in a way similar to that reported for the preparation of 20-bromoicosyl o-hydroxy- phenyl ether. Elution on silica gel of the crude reaction product with CC1, gave a 29 recovery of unchanged di- bromoalltane. Further elution with CHC1, gave the pure title conipound in 37 yield, m.p. 65-67 "C. The spec- tral properties were similar to those of the lower homo- logues @ and confirnied the expected structure. Bromine content was within 0.5 of theory.Other materials were available from previous investigations.8* @ Product analysis was carried out for the cyclisation of (1; n = 8) on a scaled-up kinetic experiment. After the standard work-up, the yield of cyclic product was deter- mined by g.1.c. analysis (internal standard) on a 1m column, packed with 2 SE 30 plus 0.5 FFAP on Chromosorb W 60-80, operated at 120". 0/398 Received, 1lth March, ISSO REFERENCES Part 14, C. Galli, G. Illuminati, and L. Mandolini, J. Org.Chem., 1980, 45, 311. R. D. Gandour, 'Transition States of Biochemical Pro-cesses ', eds. R. D. Gandour and R. L. Showen, Plenum Press, New York, 1978, ch. 14, p. 529. T. H. Fife, Adv. Phys. Org. Chrm., 1975, 11, 1. R. L. Showen, ' Transition States of Biochemical Pro-cesses ', eds.R. D. Ganclour and R. L. Showen, Plenum Press, New York, 1978, ch. 2, p. 77. L. Mandolini, B. Masci, and S. Roelens, J.Ovg. Chew, 1577,42, 3733. G. llluininati, L. Mandolini, and R.Masci, J. Amer. Chew. SOC.,1975, 97, 4960. G. Illuminati, L. Mantlolini, and B. Masci, J. Amer. Chem. SOC.,1977, 99, 6308.* G. Illuminati, L. Mandolini, and euro;3. Masci, J. Anzer. Chew SOC.,1974, 96, 1422. L. Mandolini and euro;3. Masci, J. Ovg. Chem., 1977, 42, 2840. L. Mandolini, J. Amer. Chem. SOC., 1978, 100, 5.50. ti. A. Lkfforn and D. E. Ko.~hland,jun., J. Amer. Chmz. SOC., 1977, 99, 7246. la T. C,. Rriiice and A. Tiirner, J. Amr. Chem. SOC.,1970, 92, 3422. j3 E. I. Thornton and E. R. Thornton, ' Transition States of Biochemical Processes ', eds. I. D. Gaticlour and I. L. Showen, Plenum Press, New York, 1978, ch. 1, p. 1. la J. Sicher, Progv. Stcrcochcm., 1962, 8, 202. Ib M. A. Winnik, Accounts Cltem. Res., 1977, 10, 173. l8 G. Tlluniinati, * 'Techniques of Cheniistry ', ed. M. R. J. Dack, Wiley, New York, 1976, vol. 8/2, ch. 12, p. 159. l7 C. Galli, G. Giovannelli, G. Illuminati, and L. Mandolini, J. Org. Chcm., 1979, 44, 1258. la R. G. Woolford, Canad. J. Chem., 1962, 40, 1846.
机译:J.C.S. Perkin I1 闭环反应。第 15 部分 Solvent Effects on Cyclic Aralkyl Ether Formation by Intramolecular Williamson Synthesis 作者:Antonella Dalla Cort、Gabriello Illuminati、Luigi Mandolini,' 和 Bernard0 Masci,“Centro di Studio sui Meccanismi di Reazione del Consiglio Nazionale delle Ricerche, c/o lstituto di Chimica Organica, UniversitA di Roma, 00185 Roma, Italy 已获得通过内膜形成邻苯二酚聚亚甲基醚的产品分析、速率数据和有效 mdarity (em.) 值O-O-溴烷氧基苯酚在Me,SO-水中的烷基化反应(99:1,v/v)。研究了 6-32 范围内的 12 种戒指尺寸。与EtOH-水(75 : 25, v/v)(n 32 除外)中反应的类似数据进行比较表明,尽管在环化反应和相关的分子间模型反应中都观察到较大的溶剂效应,但 e.m.值在很大程度上与溶剂无关。仅在中环区域观察到小效应。根据数据,对溶剂对分子内环化作用的主要可能因素进行了批判性分析。要彻底了解分子内反应的反应性,需要在坚实的实验基础上评估结构和溶剂化效应。分子内反应的大速率加速(所谓的分子内效应)刺激了大量的实验和理论研究,这不仅对 pev se 感兴趣,而且与阐明酶 a~tion.~-~ 结构效应一直是多项研究的主题, 尽管溶剂化被认为在分子内effe~t.39~中起作用,但对溶剂效应的关注较少,填补这一空白的合适方法是在两种性质基本不同的溶剂中进行溶剂敏感反应,并在广泛的环尺寸上测试闭环趋势。为了避免复杂的反应机理和/或由于溶剂变化而可能改变限速步骤引起的复杂反应,需要简单的反应。邻苯二酚聚亚甲基醚 (2) 通过 (1) (2) 邻溴烷氧基苯酚 (1) 的分子内 &%型烷基化反应形成邻苯二酚聚亚甲基醚 (2) 似乎满足这些条件。特别是,2-甲氧基苯酚离子与丁基溴的反应,丁基溴是反应(1)的分子间对应物,在Me,SO-水(99:1v/v,称为99%Me,SO)lo4中比在EtOH-水(75:25 v/v,称为75%EtOH)中进行得更快。十六元环(2;n = 16)的形成同样受到这些溶剂^.^的影响。由于我们已经获得了 75% EtOH 中环化反应 (1) 的速率数据,对于 6-24 范围内的许多环尺寸,我们现在报告了 99% Me,SO 溶液的类似数据,这些数据允许比较溶剂对反应有效摩尔浓度的影响 (1) 在包括6-14在内的几种环尺寸上, 16 和 24.本研究还包括32元环的形成,这是迄今为止速率研究中考虑的最大聚乙烯环化合物。结果 在25.0 “C下,通过监测314 nm处苯氧化物吸收的消失,在S9yo Me,SO溶液中进行了速率测量。阴离子(1)是通过向母体酚中加入计算量的KOH溶液而原位生成的.6初始浓度在6 x 10-5-3 x ~O-*M范围内,即足够低,以确保环化反应没有任何明显的二级聚合贡献。一阶图对至少 80% 的转化显示出良好的线性,并且无论何时测试,一阶速率常数 (kobs) 都与给定范围内的初始浓度无关。六元环和七元环的形成速度太快,无法用传统的分光光度法进行跟踪。在这些情况下,需要一种停止流动技术。环化到六元环,这是所研究的最快的反应,在绝对尺度上也非常迅速,半衰期(0.7 ms)与仪器的混合时间相同数量级。如前所述6**,无穷远光谱显示残余的苯氧化物吸收,在加入一滴浓盐酸后消失。这种现象部分是由于E2类型的竞争性分子内辅助消除.6**由于副反应消耗了另一个当量的碱,因此相应地调整了在零时间添加的KOH储备溶液的量。环状产物的收率为100(1 -OD/OD,),其中OD是酸化后在无穷大时间消失的吸收量,OD是指零时间。表1报告了速率测量的结果,并表明,除了八元环和九元环外,副反应的程度不超过总反应的10%,因此在大多数情况下,只需少量的校正即可将滚刀值转换为相应的提示值。对于24元环和32元环,校正的不确定性更大,因为可能是由于产物的一些沉淀而产生的轻微扰动,在尽可能低的浓度(约5 x 10Pnr)下仍可观察到。对反应结束时动力学溶液的分析表明,八元环的收率为78%和2%,与分光光度估计值(83%)相当吻合。此外,在接近动力学实验的条件下,在制备规模上进行了导致环状化合物(2;n = 11-14和16)的环化反应,分离产率在58-737;范围内。表1 in !表 1 的 MyoMe,SO 在 25 “C 处和表 2 中重新移植的有效摩尔浓度 (e.m.)* 数据.已经报道了一套完整的 e.m. 值,在 50 ”C 时 75:/0 EtOH“中,除了环尺寸 32,其研究由于溶解度非常低而在该培养基中变得不切实际。在可能的情况下,根据速率常数的已知温度系数,从不同温度下的数据推断出25“C。值得注意的是,尽管99%Me,SO的环化速率明显快于75'j/,但EtOH的环化速率和e.m.值表现出相对较小的变化,或者在某些情况下根本没有变化。在六元环的情况下,形成速率受溶剂变化的影响,其方式与分子间模型反应完全相同。在一些大于六元环的化合物中,观察到明显的溶剂效应超出了实验误差,并考虑到使用的不同温度。为了讨论溶剂对分子内反应的影响,我们可能想知道 cto 双功能链分子末端基团的固有反应性在多大程度上受到端基周围溶剂化层的可能变化的影响,这是 tlie 链长度的函数。最简单的可想象模型是将溶剂化壳的结构视为与给定环化序列的链长无关。对本反应在75%EtOH6以及其他环化反应1°中的活化熵的检查表明,上述模型是相当好的,可能排除了非常短的链。因此,当围绕官能团的两个溶剂化壳层被可特农溶剂取代时,由于溶剂重组而产生的自由能变化 溶剂 - o--OC,H,O[CH,],-,Br no kobs/S-l 6 1.02 * 0.01 x lo3 7 4.07 f0.07 8 2.66 f.0.18 x 10-l 9 3.91 & 0.02 x 10 9.20 0.20 x 10-3 11 9.34 & 0.01 x 10-2 12 1.11 & 0.01 x 10-2 是 9.94 + 0.03 x 10-3 14 8.43 om x 10-316 8.79 0x3 x 10-3~ kintrs (99% Me,SO) 产量 kintra (%I kintrals-l (75% EtOH) 92 9.4 x 102 9 700 90 3.7 4 no0 89 2.2 x 10-1 7 300 67 2.6 x 4 600 91 8.4 x 10-3 2 400 92 8.6 x a 900 93 1.0 x 10-2 92 9.1 x 10-3 90 7.6 x 10-3 15 200 91 8.0 x 10-3 13 100 24 1.22 f0.08 x LOV3 ca.95 1.2 x10-2 5 100 32 1.25 * 0.05 x 10-2 约 95 1.2 x 10-2 Inter 2.95 x 10-l 9 700 a 尺寸 ol 要形成的环。平均 2-4 次独立运行。c 基于分光光度法分析。以 koba(产量 yo/lOO)计算。在 25 “C. 根据不同温度下的数据评估 75% EtOH 中的速率恒子。 f 现值与先前 r~ported 的 (9.04 f0.1 1 x s-l) 相比良好.~ 分子间模型反应是 2-甲氧基苯酚离子与溴化丁酯的烷基化反应。速率常数 (hinter) 以 1 mol-1 s-1 给出(来自参考文献 5)。讨论 表1中报告的速率数据显示,在99%的Me,SO中,反应性对链长的依赖性显示出与表2基本相同的特征 75%EtOH和99%Me,SO中e.m.数据对o--OC,H,O[CH,],,-,Br E.m./M (I E.m./M E.ITl./M b Em.(75% HtOH; 50 “C) E.m. (750/, EtOFI;25 “C) n (99% Me,SO, 25”) (75% EtOII, 50“) (75% EtOH, 25”) Em.(99% Me2SO; 25 “C) E.m. (99% Me,SO;25 “C) 6 3 200 3 900 3 800 7 12.5 36 25 8 0.75 1.8 0.99 9 0.088 0.31 0.19 10 0.028 0.15 0.11 11 0* 029 0.046 0.032 12 0.034 0.057 13 0.031 0.038 14 0.026 0.022 0.016 16 0.027 0.023 0.020 24 0.041 0.064 0.070 32 0.041 a 这项工作。先前记录在75%EtOH中,即(i)增加Gie系列下部成员的链长急剧下降,(ii)在中环区域缺乏最小反应性,以及(iii)在大环反应中反应速率对链长的显着不敏感。最后一点由32个成员的环进一步强调,其易于形成的环与其他大环相当。通过检查最后一列 1.2 1 .o 2.9 2.0 2.3 1 .:I 3.5 2.2 5.4 3.9 1.6 1.1 1.7 1.2 0.85 0.62 0.85 0.74 1.6 1.7 来自参考文献 7.过渡态的 ation 壳层假设基本上是恒定的 ation 系列,并且,除特殊情况外,'iiimilar 到分子间模型反应的相应量。观察到的 e.m. 值对溶剂变化的不敏感表明,在两种溶剂中,量 ( AG:sol\..)illtra.-( AG:solv.)illtrr 消失 * 计算为 kintra/klnter,其中 hinter 是指分子间模型反应(见表 1 中的脚注 g)。e.m.的完整定义可以在参考文献7中找到。在大多数情况下很小。这是自 AGTsolv 以来的一个惊人结果。已知涉及阴离子亲核试剂的&2反应中的项非常大,并且在所研究的两种溶剂中应有明显差异。为了站稳脚跟,我们估计 ASmlV.对于目前的反应,在 75% EtOH 中是一个很大的正量,即 + 17 cal mol-l K-l,这被认为主要是由于过渡态亲核试剂的广泛去溶剂化引起的。上述证据明确表明,溶剂化并不能解释 J.C.S.Perkin I1 溶剂对 Kintrafkjn+,er 比率的贡献发生在两种溶剂中,它们属于完全不同的类别.16 因此,从质子 75% EtOH 转移到本质上非质子 99% Me,SO 的最重要因素是端基固有反应性的变化。此外,这项工作进一步强调了e.m.参数在分子内反应反应性的一般讨论中的重要作用。e.m.与溶剂无关的近似性,这一发现再次说明了其定义为双功能链分子闭环趋势的真正绝对度量。Dafforn 和 Koshland l1 在水中和硫醇醚中内酯和硫内酯的形成研究中得出了类似的结论,作为酶促反应中溶剂化效应的可能模型,以及 Bruice 和 Turner1 在水中和 Me,SO 加 1~-水中酸酐形成的类似比较中得出了类似的结论。最显着的溶剂效应虽然很小,但在中环上观察到,并且可能与要形成的环的应变有关。值得注意的是,75% EtOH 的 e.m. 值通常高于 99% Me,SO。通过将桑顿反应键规则 l3 应用于手头的反应,可以在两种溶剂中过渡态改变键断裂和键生成贡献方面找到一个初步的解释。从7576 EtOH转移到99yoMe,SO会增加亲核试剂的亲核性,降低离去基团的离基能力。这两个因素相互对立,最终结果是沿再作用坐标的运动(平行效应)将受到很小的影响。然而,所指示的溶剂变化将有利于亲核试剂-碳和碳-离开基团距离(垂直效应)的同时减小,并导致过渡态更紧密,特别是,99%Me,SO中的氧-碳距离比75%的氧-碳距离短 EtOH.In 因此,循环过渡态导致99%Me中的中等大小环,SO应该在更大程度上受到中环典型的空间应变的影响,即跨环相互作用和键反对力,14这是由于空间拥挤造成的。最后,可以简要地谈谈溶剂诱导的链分子构象变化的可能问题,以及这些变化对环化难易程度的可能影响,正如Winnik所指出的15,尽管目前的比较仅限于两种溶剂,这使得很难评估这种细微的影响J15观察到的行为, 特别是 E.M. 的虚拟恒定性。大环的值似乎表明,链构象的任何可能修饰对从75%EtOH到99y0Me,SO的转化没有显着影响。作为结论,我们注意到,尽管在中环区域检测到轻微的影响,但对于剩余的环尺寸,基本取消了 tlie 实验 混合溶剂(99% Me,SO)和 KOH 储备溶液(2 x 10-2~在 93% Me,SO 中)像以前一样制备、储存和处理。G 该装置与先前报道的大致相同。G 在 Durrurn-Gibson 停止流分光光因仪 D-110 上进行停止流动动力学,与 Hewlett-Pacltard 存储示波示波器型号 1207 R.MateviaZs.-l 相匹配,通过 Woolford 程序的修改 l7,18 m.p. 78-79 “C(来自 EtOAc)(1it.,l8 78-79 ”C)制备了 33% 产率的 28-Dibronio-octacosane。由1,28-二溴辛烷和邻苯二酚合成了28-溴-八烷基邻羟基苯醚,其方法与制备20-溴二十烷基邻羟基苯醚的方法相似。在硅胶上用CC1洗脱粗反应产物,得到29%的未变二溴阿普烷回收率。用CHC1进一步洗脱,得到纯标题分枝,收率为37%,熔点65-67“C。光谱性质与低等同系物@相似,并符合预期的结构。溴含量在理论值的0.5%以内。其他材料可从以前的调查中获得。8* @ 在放大动力学实验中对 (1; n = 8) 的环化进行了产物分析。标准处理后,通过g.1.c抑制了环状产物的收率。在 1m 色谱柱上进行分析(内标),在 Chromosorb W 60-80 上填充有 2% SE 30 和 0.5% FFAP,操作速度为 120”。[0/398 收稿日期:3 月 1 日,ISSO]参考文献 第 14 部分,C. Galli、G. Illuminati 和 L. Mandolini,J. Org.Chem.,1980,45,311。R. D. Gandour, 'Transition States of Biochemical Pro-cesses', eds. R. D. Gandour and R. L. Showen, Plenum Press, New York, 1978, ch. 14, p. 529.T. H. Fife, Adv. Phys. Org. Chrm., 1975, 11, 1.R. L. Showen, 'Transition States of Biochemical Pro-cesses ', eds.R. D. Ganclour and R. L. Showen, Plenum Press, New York, 1978, ch. 2, p. 77.L. Mandolini、B. Masci 和 S. Roelens、J.Ovg。咀嚼,1577,42,3733。G. llluininati、L. Mandolini 和 R.Masci、J. Amer. Chew。SOC.,1975, 97, 4960.G. Illuminati, L. Mantlolini, and B. Masci, J. Amer. Chem. SOC.,1977, 99, 6308.* G. Illuminati, L. Mandolini, and €3.马西,J.安泽尔。周SOC.,1974, 96, 1422.L. Mandolini 和 3 欧元。马西,J. Ovg。化学, 1977, 42, 2840.L. Mandolini, J. Amer. Chem. SOC., 1978, 100, 5.50.钛。A. Lkfforn 和 D. E. Ko.~hland,jun., J. Amer. Chmz. SOC., 1977, 99, 7246.la T. C,.Rriiice 和 A. Tiirner、J. Amr。化学SOC.,1970, 92, 3422.j3 E. I<.Thornton 和 E. R. Thornton,“生化过程的过渡状态”,编辑 I<。D. Gaticlour 和我<。L.Showen,Plenum Press,纽约,1978 年,第 1 章,第 1 页。la J. Sicher,Progv。Stcrcochcm., 1962, 8, 202.Ib M. A. Winnik,帐户 cltem。研究, 1977, 10, 173.l8 G. Tlluniinati, * 'Techniques of Cheniistry ', ed. M. R. J. Dack, Wiley, New York, 1976, vol. 8/2, ch. 12, p. 159.l7 C. Galli, G. Giovannelli, G. Illuminati, and L. Mandolini, J. Org. Chcm., 1979, 44, 1258.la R. G. Woolford, Canad. J. Chem., 1962, 40, 1846.

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号